
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Slow growth of calcite in confinement is abundant in Nature and man made materials. There is ample evidence that such confined growth may create forces that fracture solids. The thermodynamic limits are well known but since confined crystal growth is transport limited and difficult to control in experiment we have almost no information on the mechanisms or limits of these processes. We present a novel approach to in situ study of confined crystal growth using microfluidics for accurate control of the saturation state of the fluid and interferometric measurement of the topography of the growing confined crystal surface. We observe and explain the diffusion limited confined growth structures observed and can measure the crystal "floating" on a fluid film of 10-40~nm thickness due to the disjoining pressure. We find that there are two end member behaviours: smooth or intermittent growth in the contact region, the latter being faster than the former.
Crystallography, QD901-999, crystal growth, microfluidic, crystal growth; calcite; microfluidic; nanoconfinement; reflection interference contrast microscopy, reflection interference contrast microscopy, condensed_matter_physics, calcite, nanoconfinement
Crystallography, QD901-999, crystal growth, microfluidic, crystal growth; calcite; microfluidic; nanoconfinement; reflection interference contrast microscopy, reflection interference contrast microscopy, condensed_matter_physics, calcite, nanoconfinement
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
