
We propose a new rendering system for large-scale, 3D geometic data that can be used with web-based content man-agement systems (CMS). To achieve this, we employed a geometry hierarchical encoding method "QSplat" and implemented this in a Java and JOGL (Java bindings of OpenGL) environment. Users can view large-scale geometric data using conventional HTML browsers with a non-powerful CPU and low-speed networks. Further, this system is independent of the platforms. We add new functionalities so that users can easily understand the geometric data: Annotations and HTML Synchronization. Users can see the geometric data with the associated annotations that describe the names or the detailed explanations of the particular portions. The HTML Synchronization enables users to smoothly and interactively switch our rendering system and HTML contents. The experimental results show that our system performs an interactive frame rate even for a large-scale data whereas other systems cannot render them
HTML synchro -nization, CMS, Annotation, [INFO] Computer Science [cs], 3Ddata
HTML synchro -nization, CMS, Annotation, [INFO] Computer Science [cs], 3Ddata
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
