Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vìsnik Nacìonalʹnogo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impedance measurement front-end based on signal four-phase detection

Authors: Barylo, G. I.; Holyaka, R. L.; Prudyus, I. N.; Fabirovskyy, S. E.;

Impedance measurement front-end based on signal four-phase detection

Abstract

Internet of Things (IoT), a new direction in information and communication systems, has a significant impact on the development of novel electronics devices. Further progress in the field of IoT devices is conditioned by the development of sensor devices, and in particular, analog front-ends and signal converters for IoT sensors. High sensitivity and wide range applications of IoT sensors can be achieved by methods of impedance spectroscopy. Compared with other methods of physical research, impedance spectroscopy and based on it IoT sensor devices provide ease of implementation, high energy efficiency, good resolution and selectivity. In this paper, we present results of the development and model study of the impedance measuring transducer using the four-phase signal integration method. The implementation of impedance spectroscopy assumes a transition from frequency plots to plots on the complex plane, called as Nyquist plots. The data obtained in this paper are based on the SPICE (Simulation Program with Integrated Circuit Emphasis) model studding methodology, which compares small signal Alternative Current Analysis with large signal Transient Analysis. During the Alternative Current Analysis, Nyquist impedance plot are obtained in the idealized case, and during the Transient Analysis the active ReZ value and reactive ImZ impedance components are calculated for the actual parameters of the measuring transducers and the form of the activating signals. We have proposed a new solution of the impedance measuring transducer based on the four-phase signal commutation and integration method. This method consists in the formation of four informative signals, namely, the voltages $V_{Q1}$, $V_{Q2}$, $V_{Q3}$ та $V_{Q4}$, each of which corresponds to the integration results in the corresponding four phases of the activation signal. In these phases, or time t, the sign functions $A_{Q1}(t)$, $A_{Q2}(t)$, $A_{Q3}(t)$, $A_{Q4}(t)$ of synchronous detections are used: $A_{Q1}(t)=1$ at $t=[0...\pi/2]$; $A_{Q2}(t)=1$ at $t=[\pi/2...\pi]$; $A_{Q3}(t)=1$ at $t=[\pi...3\pi/2]$; $A_{Q4}(t)=1$ at $t=[3\pi/2...2\pi]$. In other time these sign functions are equal 0. Output signals of the impedance measuring transducer, namely, voltages of active $V_{RE}$ and the reactive $V_{IM}$ components are formed by adding and subtracting the numerical values of the above four voltages: $V_{RE}=V_{Q1}+V_{Q2}-V_{Q3}-V_{Q4}$; $V_{IM}=V_{Q1}-V_{Q2}-V_{Q3}+V_{Q4}$. The main units of the impedance measuring analog front-end are a synchronous quadrature detector and an integrator or filter. In comparison to traditional two-phase detection, four-phase detection we have proposed allows avoiding intermediate signal transducing, which provides a significant simplification of impedance measuring transducing. This simplification is achieved by directly integrating the instantaneous value of the $I_{Z}(t)$ current. Important dependences of the measuring transducer output voltages with four-phase integration on the operational amplifiers bandwidth are obtained. Results presented in the article are important for developing a new generation of microelectronic IoT sensor devices based on impedance spectroscopy methods. Main areas of application of such sensor devices are materials science, biochemistry, instrumentation, avionics, ecology, etc.

Работа посвящена проблемам разработки сенсорных устройств на основе методов импедансной спектроскопии. По сравнению с другими методами физических исследований устройства импедансной спектроскопии обеспечивают простоту реализации, высокую энергоэффективность, хорошую разрешающую способность и селективность измерений параметров исследуемых объектов. Представлены результаты разработки и модельного исследования измерительного преобразователя импеданса с использованием метода четырехтактного детектированием сигнала. В отличие от традиционного двухтактного детектирования, четырехтактное детектирование сигнала позволяет существенно упростить схемы преобразователей. Такое упрощение достигается непосредственным интегрированием мгновенного значения $I_{Z}(t)$ тока без использования промежуточных каскадов сигнального преобразования. Проведенные модельные исследования и параметрический анализ базируются на методе расчета с использованием Transient анализа SPICE моделей, в результате которого определяют активную $Z_{RE}$ и реактивную $Z_{IM}$ составляющие измеряемого импеданса для фактических параметров сигналов и элементной базы схемы преобразователя. Представлены зависимости выходных напряжений измерительного преобразователя с четырехтактным детектированием от ширины полосы рабочих частот операционных усилителей. Полученные результаты имеют важное значение для решения проблем разработки нового поколения микроэлектронных сенсорных устройств концепции Интернета Вещей на основе методов импедансной спектроскопии, в частности, в области материаловедения, биохимии, приборостроения, авионики, экологии и др.

Робота присвячена проблемам розроблення сенсорних пристроїв на основі методів імпедансної спектроскопії. У порівнянні з іншими методами фізичних досліджень пристрої імпедансної спектроскопії забезпечують простоту реалізації, високу енергоефективність, хорошу роздільну здатність та селективність вимірювань параметрів досліджуваних об’єктів. Представлені результати розроблення та модельного дослідження вимірювального перетворювача імпедансу з використанням методу чотиритактного детектуванням сигналу. На відміну від традиційного двотактного детектування, чотиритактне детектування сигналу дозволяє суттєво спростити схеми перетворювачів. Таке спрощення досягається безпосереднім інтегруванням миттєвого значення $I_{Z}(t)$ струму без використання проміжних каскадів сигнального перетворення. Проведені модельні дослідження та параметричний аналіз базуються на методі розрахунку з використанням Transient аналізу SPICE моделей, в результаті якого визначають активну $Z_{RE}$ та реактивну $Z_{IM}$ складові вимірюваного імпедансу для фактичних параметрів сигналів та елементної бази схеми перетворювача. Представлені залежності вихідних напруг вимірювального перетворювача з чотиритактним детектуванням від ширини смуги робочих частот операційних підсилювачів. Отримані результати мають важливе значення для вирішення проблем розроблення нового покоління мікроелектронних сенсорних пристроїв концепції Інтернету Речей на основі методів імпедансної спектроскопії, зокрема, в галузях матеріалознавства, біохімії, автомобілебудування, авіоніки, екології тощо.

Related Organizations
Keywords

621.382, імпедансна спектроскопія; сигнальні перетворювачі; Інтернет речей; SPICE моделювання, impedance spectroscopy; signal front-end; Internet of Things; SPICE simulation, импедансная спектроскопия; сигнальные преобразователи; Интернет вещей; SPICE моделирование

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold