Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Innovative Biosystem...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Innovative Biosystems and Bioengineering
Article . 2018 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Innovative Biosystems and Bioengineering
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Colloidal Characteristics of Water Systems of Rhamnolipid Biocomplex of Strain Pseudomonas sp. PS-17 with Tween-80 and their Prospects for Biotechnology

Authors: Karpenko, Elena; Voloshynets, Vladislav; Karpenko, Ilona; Pokynbroda, Tetyana; Semenyuk, Ihor; Midyana, Halyna;

Colloidal Characteristics of Water Systems of Rhamnolipid Biocomplex of Strain Pseudomonas sp. PS-17 with Tween-80 and their Prospects for Biotechnology

Abstract

Background. Efficiency of mixed systems of biogenic and synthetic surfactants, based on their colloidal chemical properties, in environmentally safe technologies. Objective. The aim of the paper is the study of the aqueous systems’ colloidal characteristics of the rhamnolipid biocomplex with Twееn-80 nonionic surfactant, as well as the study of the obtained mixtures’ action for the emulsion stabilization and for plant growth stimulation. Methods. The surface tension of RBC, Tween-80, and their mixture solutions was measured by the Du-Nui method (with a platinum ring). The dependence of the surface tension on the surfactant concentration was determined for mixtures with RBC content, %: 0.0; 11.1; 25.0; 42.9; 66.7; 100. The emulsifying activity of the surfactant mixtures was determined on the emulsification index (E24). The surfactant influence on plants was assessed by their morphometric parameters after presowing seed treatment. Results. It was found that the obtained mixture behavior, regardless of the surfactant concentration, deviates from the ideal mixture – the deviation is negative, which indicates the predominance of RBC in the surface layer. The shapes of the surface tension curves for different surfactant ratios indicate synergistic effects before and after micelle formation. The optimum ratio in the RBC-Tween-80 system for sunflower growth and sunflower oil emulsification is 2:1. Conclusions. The peculiarities of colloid-chemical characteristics of RBC and Tween-80 systems are determined, the prospects of their use for increasing efficiency of emulsification and sunflower growth stimulation are determined.

Keywords

Plant growth stimulation, Surface activity; Rhamnolipid biocomplex; Twееn-80; Surfactant systems; Еmulsification; Plant growth stimulation, Rhamnolipid biocomplex, Chemical technology, Science, Q, Поверхнева активність; Рамноліпідний біокомплекс; Tween-80; Системи поверхнево-активних речовин; Емульгування; Cтимулювання росту рослин, TP1-1185, Twееn-80, Еmulsification, Surfactant systems, Surface activity, Поверхностная активность; Рамнолипидный биокомплекс; Tween-80; Системы поверхностно-активных веществ; Эмульгирование; Cтимуляция роста растений

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold