Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Applications of Impulsive Differential Equations to the Control of Malaria Outbreaks and Introduction to Impulse Extension Equations: a General Framework to Study the Validity of Ordinary Differential Equation Models with Discontinuities in State

Authors: Church, Kevin;

Applications of Impulsive Differential Equations to the Control of Malaria Outbreaks and Introduction to Impulse Extension Equations: a General Framework to Study the Validity of Ordinary Differential Equation Models with Discontinuities in State

Abstract

Impulsive differential equations are often used in mathematical modelling to simplify complicated hybrid models. We propose an inverse framework inspired by impulsive differential equations, called impulse extension equations, which can be used as a tool to determine when these impulsive models are accurate. The linear theory is the primary focus, for which theorems analoguous to ordinary and impulsive differential equations are derived. Results explicitly connecting the stability of impulsive differential equations to related impulse extension equations are proven in what we call time scale consistency theorems. Opportunities for future research in this direction are discussed. Following the work of Smith? and Hove-Musekwa on malaria vector control by impulsive insecticide spraying, we propose a novel autonomous vector control scheme based on human disease incidence. Existence and stability of periodic orbits is established. We compare the implementation cost of the incidence-based control to a fixed-time spraying schedule. Hybrid control strategies are discussed.

Country
Canada
Keywords

Mathematical model, Model validation, Impulsive differential equation, Stability, 531, Vector control, Malaria

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!