
In this study, stability conditions are given for nonlinear time varying systems using the classical Lyapunov 2nd Method and its arguments. A novel approach is utilized and so that uniform stability can also be proved by using an unclassical Lyapunov Function. In contrast with the studies in the literature, Lyapunov Function is allowed to be negative definite and increasing through the system. To construct a classical Lyapunov Function, we use a reverse time approach methodology for the intervals where the unclassical one is increasing. So we prove the stability using a new Lyapunov Function construction methodology. The main result shows that the existence of such a function guarantees the stability of the origin. Some numerical examples are also given to demonstrate the efficiency of the method we use.
Engineering, Nonlineer Sistemler;Kararlılık Analizi;Lyapunov 2. Metodu;Lyapunov Fonksiyonu;Zamanla değişen Sistemler;Düzgün Kararlılık, Mühendislik, Nonlinear Systems;Stability Analysis;Lyapunov 2nd Method;Lyapunov Function;Time-varying Systems;Uniform Stability
Engineering, Nonlineer Sistemler;Kararlılık Analizi;Lyapunov 2. Metodu;Lyapunov Fonksiyonu;Zamanla değişen Sistemler;Düzgün Kararlılık, Mühendislik, Nonlinear Systems;Stability Analysis;Lyapunov 2nd Method;Lyapunov Function;Time-varying Systems;Uniform Stability
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
