Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Periodont...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Periodontology
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transcriptomes in Healthy and Diseased Gingival Tissues

Authors: Ryan T. Demmer; Romanita Celenti; Jan H. Behle; Dana L. Wolf; Moritz Kebschull; Panos N. Papapanou; Martin Handfield; +1 Authors

Transcriptomes in Healthy and Diseased Gingival Tissues

Abstract

Background: Clinical and radiographic measures are gold standards for diagnosing periodontitis but offer little information regarding the pathogenesis of the disease. We hypothesized that a comparison of gene expression signatures between healthy and diseased gingival tissues would provide novel insights in the pathobiology of periodontitis and would inform the design of future studies.Methods: Ninety systemically healthy non‐smokers with moderate to advanced periodontitis (63 with chronic periodontitis and 27 with aggressive periodontitis) each contributed at least two diseased interproximal papillae (with bleeding on probing [BOP], probing depth [PD] ≥4 mm, and attachment loss [AL] ≥3 mm) and a healthy papilla, if available (no BOP, PD ≤4 mm, and AL ≤2 mm). RNA was extracted, amplified, reverse‐transcribed, labeled, and hybridized with whole genome microarrays. Differential expression was assayed in 247 individual tissue samples (183 from diseased sites and 64 from healthy sites) using a standard mixed‐effects linear model approach, with patient effects considered random with a normal distribution and gingival tissue status considered a two‐level fixed effect. Gene ontology analysis classified the expression patterns into biologically relevant categories.Results: Transcriptome analysis revealed that 12,744 probe sets were differentially expressed after adjusting for multiple comparisons (P <9.15 × 10−7). Of those, 5,295 were upregulated and 7,449 were downregulated in disease compared to health. Gene ontology analysis identified 61 differentially expressed groups (adjusted P <0.05), including apoptosis, antimicrobial humoral response, antigen presentation, regulation of metabolic processes, signal transduction, and angiogenesis.Conclusion: Gingival tissue transcriptomes provide a valuable scientific tool for further hypothesis‐driven studies of the pathobiology of periodontitis.

Related Organizations
Keywords

Adult, Male, Periodontium, Adolescent, Gene Expression Profiling, Gingiva, Middle Aged, Severity of Illness Index, Young Adult, Gene Expression Regulation, Reference Values, Case-Control Studies, Chronic Disease, Humans, RNA, Female, Periodontitis, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    172
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
172
Top 1%
Top 10%
Top 10%
bronze