
The C. elegans tubulin family is composed of nine α-, six β-, and one γ-tubulin. Tubulins are highly conserved, functioning as α-β heterodimers that assemble into microtubules. These cylindrical and ubiquitous components of the cytoskeleton are critical for nearly all cellular and developmental processes. C. elegans has provided a model for the study of microtubules in multiple settings including separation of chromosomes, cellular polarity, and neuronal sensation. Tubulins and microtubules interact with a long list of other cellular proteins that regulate tubulin homeostasis, modify microtubule dynamics, and control incorporation into or disassociation of higher-order cellular structures such as spindles or ciliary axonemes. A collection of enzymes modifies tubulins, often at the variable carboxyl-terminal tail, adding another layer of regulation to microtubule structure and function. Genetic and cytological studies in C. elegans have revealed roles for tubulin and its associated proteins in numerous contexts from embryogenesis to adult behavior.
570, Tubulin, Animals, 540, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Biology, Microtubules
570, Tubulin, Animals, 540, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Biology, Microtubules
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
