
The most abundant synapses in the central nervous system of vertebrates are inhibitory synapses that use the neurotransmitter gamma-aminobutyric acid (GABA). GABA is also an important neurotransmitter in C. elegans; however, in contrast to vertebrates where GABA acts at synapses of the central nervous system, in nematodes GABA acts primarily at neuromuscular synapses. Specifically, GABA acts to relax the body muscles during locomotion and foraging and to contract the enteric muscles during defecation. The importance of this neurotransmitter for basic motor functions of the worm has facilitated the genetic analysis of proteins required for GABA function. Genetic screens have identified the GABA biosynthetic enzyme, the vesicular transporter, inhibitory and excitatory receptors, and a transcription factor required for the differentiation of GABA cell identity. The plasma membrane transporter and other GABA receptors have been identified by molecular criteria.
Neurons, Neurotransmitter Agents, Nematoda, Animals, gamma-Aminobutyric Acid
Neurons, Neurotransmitter Agents, Nematoda, Animals, gamma-Aminobutyric Acid
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 87 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
