Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAReferencia - Red F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Tecnología en Marcha
Article . 2016 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Tecnología en Marcha
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Tecnología en Marcha
Article . 2016
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

Estrategia basada en el aprendizaje de máquina para tratar con conjuntos de datos no etiquetados usando conjuntos aproximados y/o ganancia de información

Authors: Calvo-Valverde, Luis Alexánder;

Estrategia basada en el aprendizaje de máquina para tratar con conjuntos de datos no etiquetados usando conjuntos aproximados y/o ganancia de información

Abstract

<p class="p1">Hoy en día se recogen datos de muy diversa índole y a un bajo costo, como no se había visto antes en la historia de la humanidad; por ejemplo, sensores que registran datos a cada minuto, páginas <em>web </em>que almacenan todas las acciones que realiza el usuario, supermercados que guardan todo lo que sus clientes compran y en qué momento lo hacen. Pero estas grandes bases de datos presentan un gran reto a sus propietarios ¿Cómo sacarles provecho?, ¿cómo convertir datos en información para la toma de decisiones? </p><p class="p1">Este artículo presenta una estrategia basada en el aprendizaje de máquina para tratar con conjuntos de datos no etiquetados utilizando conjuntos aproximados y/o ganancia de información. Se propone una estrategia para agrupar los datos utilizando <em>k-means</em>, considerando cuánta información aporta un atributo (ganancia de información), además de poder seleccionar cuáles atributos son realmente indispensables para clasificar nuevos datos y cuáles son dispensables (conjuntos aproximados), lo cual es muy beneficioso pues permite tomar decisiones en menor tiempo. </p>

Country
Costa Rica
Related Organizations
Keywords

Technology, reducción de atributos, Information Gain, Entropy, T, Aprendizaje de máquina; minería de datos; conjuntos aproximados; entropía; ganancia de información; reducción de atributos, entropía, minería de datos, Machine Learning; Data Mining; Rough Sets; Entropy; Information Gain; Feature Reduction, Machine Learning, Data Mining, Aprendizaje de máquina, Feature Reduction, Rough Sets, conjuntos aproximados, ganancia de información

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold