
Ð”Ð°Ð½Ð½Ð°Ñ Ñ€Ð°Ð±Ð¾Ñ‚Ð° поÑвÑщена разработке выÑокоÑффективной проточной чаÑти оÑевого наÑоÑа быÑтроходноÑтью ns = 600. Задачи, которые решалиÑÑŒ в ходе иÑÑледованиÑ: 1. Проектирование иÑходной проточной чаÑти на заданные параметры; 2. Определение параметров математичеÑкой модели раÑчёта Ñ‚ÐµÑ‡ÐµÐ½Ð¸Ñ Ð²Ñзкой жидкоÑти и потерь в Ñпроектированной проточной чаÑти; 3. МультидиÑциплинарные иÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ñ Ð¿Ñ€Ð¾Ñ‡Ð½Ð¾Ð¹ чаÑти (гидродинамичеÑкие иÑÑледованиÑ, валидациÑ, кавитационные иÑÑледованиÑ, Ñрозионные иÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ñ Ð¸ прочноÑтные иÑÑледованиÑ); 4. ÐžÐ¿Ñ‚Ð¸Ð¼Ð¸Ð·Ð°Ñ†Ð¸Ñ Ð¸Ñходной проточной чаÑти Ñ Ð¸Ñпользованием разных методов (проектирование параметричеÑкой геометрии проточной чаÑти, диÑÐºÑ€ÐµÑ‚Ð¸Ð·Ð°Ñ†Ð¸Ñ Ñ€Ð°Ñчётной облаÑти, задание параметров математичеÑкой модели, гидродинамичеÑкие иÑÑледованиÑ, коррелÑÑ†Ð¸Ñ Ð²Ñ…Ð¾Ð´Ð½Ñ‹Ñ… параметров, оптимизациÑ). ГидродинамичеÑкие иÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ñ Ð¿Ñ€Ð¾Ð²Ð¾Ð´Ð¸Ð»Ð¸ÑÑŒ на оÑнове чиÑленного Ñ€ÐµÑˆÐµÐ½Ð¸Ñ ÑƒÑ€Ð°Ð²Ð½ÐµÐ½Ð¸Ñ Ðавье-СтокÑа методами конечных объёмов, а прочноÑтные раÑчёты на оÑнове механики о деформируемого тела методом конечных Ñлементов. Ð’ качеÑтве инÑтрументов иÑпользовалиÑÑŒ программные продукты ANSYS и SolidWorks. Ð’Ð°Ð»Ð¸Ð´Ð°Ñ†Ð¸Ñ Ñ‡Ð¸Ñленных раÑчётов проводилаÑÑŒ на оÑнове ÑкÑпериментальных данных, полученных в Лаборатории ГидромашиноÑÑ‚Ñ€Ð¾ÐµÐ½Ð¸Ñ Ð¡ÐŸÐ±ÐŸÐ£.
This work is focused on the development of a highly efficient flow part of an axial pump with speed ns = 600. The issues addressed in the study are: 1. Designing the initial flow part for the given parameters; 2. Determination of parameters of the mathematical model for calculation of viscous fluid flow and losses in the designed flow part; 3. Multidisciplinary studies of the solid part (hydrodynamic analyses, validation, cavitation studies, erosion analysis and strength analysis); 4. Optimization of the initial flow part using different methods (design of parametric geometry of the flow part, discretization of the computational domain, setting parameters of the mathematical model, hydrodynamic studies, correlation of input parameters, optimization). Hydrodynamic analysis was based on numerical solution of the Navier-Stokes equation by finite volume methods, and strength calculations based on solid mechanics by finite element method. ANSYS and SolidWorks software products were used as tools. Validation of numerical calculations was based on experimental data received at the Hydromechanical Engineering Laboratory.
кавиÑаÑиÑ, опÑимизаÑиÑ, пÑоÑноÑÑÑ, SolidWorks, axial pump, erosion, ANSYS, cavitation, оÑевой наÑоÑ, ÑÑозиÑ, strength, optimization, mathematical model, маÑемаÑиÑеÑÐºÐ°Ñ Ð¼Ð¾Ð´ÐµÐ»Ñ
кавиÑаÑиÑ, опÑимизаÑиÑ, пÑоÑноÑÑÑ, SolidWorks, axial pump, erosion, ANSYS, cavitation, оÑевой наÑоÑ, ÑÑозиÑ, strength, optimization, mathematical model, маÑемаÑиÑеÑÐºÐ°Ñ Ð¼Ð¾Ð´ÐµÐ»Ñ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
