
Объект иÑÑледовaÐ½Ð¸Ñ âˆ’ удвоение чаÑтоты широкополоÑных СВЧ Ñигналов в радиофотонной линии (волоконно-оптичеÑкой линии передачи аналоговых СВЧ Ñигналов) проводитÑÑ Ñ Ð¸Ñпользованием модулÑтора Маха-Цендера. Цель иÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ñ ÑоÑтоит в том, чтобы изучить оÑновные характериÑтики ÑƒÐ´Ð²Ð¾Ð¸Ñ‚ÐµÐ»Ñ Ñ‡Ð°Ñтоты СВЧ Ñигнала Ñ Ð»Ð¸Ð½ÐµÐ¹Ð½Ð¾Ð¹ чаÑтотной модулÑцией (ЛЧМ) на радиофотонной линии Ñ Ð¼Ð¾Ð´ÑƒÐ»Ñтором Маха-Цендера (ММЦ). Задача ÑоÑтоит в том, чтобы изучить оÑновные характериÑтики Ñамого Ñигнала Ñ Ð¿Ð¾Ð¼Ð¾Ñ‰ÑŒÑŽ линейной чаÑтотной модулÑции при различных базах Ñигнала и поÑле его удвоениÑ. 2) изучить, как работает Ñ€Ð°Ð´Ð¸Ð¾Ñ„Ð¾Ñ‚Ð¾Ð½Ð½Ð°Ñ Ð»Ð¸Ð½Ð¸Ñ Ñ Ð¼Ð¾Ð´ÑƒÐ»Ñтором Маха-Цендера, когда модулÑтор работает в различных рабочих точках (Q+, Q–, MAX, MIN). Выберите оптимальное рабочее значение ММЦ, чтобы удвоить чаÑтоту ЛЧМ Ñигнала на выходе линии. 3) определить амплитуду удвоенного ЛЧМ Ñигнала на выходе радиофотонной линии в рабочей точке ММЦ, ÐºÐ¾Ñ‚Ð¾Ñ€Ð°Ñ ÑвлÑетÑÑ Ð¾Ð¿Ñ‚Ð¸Ð¼Ð°Ð»ÑŒÐ½Ð¾Ð¹. 4) Проведите ÑкÑперименты Ñ Ð»Ð°Ð±Ð¾Ñ€Ð°Ñ‚Ð¾Ñ€Ð½Ñ‹Ð¼ макетом радиофотонной линии, ÑƒÐ¼Ð½Ð¾Ð¶Ð°Ñ Ñ‡Ð°Ñтоту входного ЛЧМ Ñигнала при различных рабочих точках ММЦ. 5) Проанализируйте и Ñравните результаты ÑкÑпериментов и раÑчетов. напиÑÐ°Ð½Ð¸Ñ Ð¾ÐºÐ¾Ð½Ñ‡Ð°Ñ‚ÐµÐ»ÑŒÐ½Ð¾Ð³Ð¾ отчета. Ð’ иÑÑледовании анализируетÑÑ Ñам ЛЧМ Ñигнал, Ð²ÐºÐ»ÑŽÑ‡Ð°Ñ ÐµÐ³Ð¾ Ñпектр и автокоррелÑционные функции, при иÑпользовании различных баз Ñигналов. База B была увеличена до значений B = 25, B = 50, B = 100 и B = 400. ÐœÐµÑ‚Ð¾Ð´Ð¾Ð»Ð¾Ð³Ð¸Ñ Ð¸ÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ñ Ð¸ÑпользовалаÑÑŒ Ð´Ð»Ñ Ð¸Ð·ÑƒÑ‡ÐµÐ½Ð¸Ñ Ñ‚Ð¾Ð³Ð¾, как Ð»Ð¸Ð½ÐµÐ¹Ð½Ð°Ñ Ñ‡Ð°ÑÑ‚Ð¾Ñ‚Ð½Ð°Ñ Ð¼Ð¾Ð´ÑƒÐ»ÑÑ†Ð¸Ñ Ð¸ Ð¸Ð·Ð¼ÐµÐ½ÐµÐ½Ð¸Ñ Ð² базе Ñигнала ÑвÑзаны Ñо Ñпектром второй гармоники Ñигнала. Следовательно, была найдена Ð¸Ð´ÐµÐ°Ð»ÑŒÐ½Ð°Ñ Ñ€Ð°Ð±Ð¾Ñ‡Ð°Ñ Ñ‚Ð¾Ñ‡ÐºÐ° Ð´Ð»Ñ Ð¼Ð¾Ð´ÑƒÐ»Ñтора, который будет производить вторую гармонию Ñ Ð½Ð°Ð¸Ð±Ð¾Ð»ÑŒÑˆÐµÐ¹ амплитудой. СоглаÑно иÑÑледованию, Ð¼Ð¸Ð½Ð¸Ð¼Ð°Ð»ÑŒÐ½Ð°Ñ Ñ€Ð°Ð±Ð¾Ñ‡Ð°Ñ Ñ‚Ð¾Ñ‡ÐºÐ° приводит к макÑимизации второй гармоники. Ðто открытие может быть иÑпользовано в множеÑтве облаÑтей, таких как телекоммуникации и Ñнергетика.
The work focuses on a Mach-Zender modulator used as a frequency doubler for microwave signals on a radio photon line, which is a fiber-optic transmission line for analog microwave signals. The objective of this research is to analyze the key features of a microwave frequency doubler that utilizes linear frequency modulation (LFM) in a radio photon line equipped with a Mach-Zender modulator (MMC). Objectives: The research focuses on analyzing the primary attributes of a signal that exhibits linear frequency modulation. This analysis is conducted at various signal bases and also after the signal is doubled. 2) Investigating the functioning of a radio photon line using a Mach-Zehnder modulator at various operating points (Q+, Q–, MAX, MIN). Determine the optimal operating parameter for the MMC in order to achieve a twofold increase in the frequency of the LFM signal at the line output. 3) Determining the magnitude of the doubled LFM signal at the output of the radio photon line while the MMC is functioning at its ideal position. 4) Experimental investigations were conducted on a laboratory model of a radio photon line to examine the frequency multiplication of the input LFM signal at various operating points of the MMC. 5) Analyzing and comparing the outcomes of computations and experiments. Compiling the conclusive report (WRC). The paper studies the LFM signal itself – its spectrum and autocorrelation function – at various signal bases. Base B altered as follows: B = 25, B = 50 and B = 100 and B = 400 more. Through research methodology, it has investigated the relationship between the spectrum of the second harmonic of a signal with linear frequency modulation and changes in the signal base. As a result, it has been identified the optimal operating point for the modulator that will generate the second harmonic with the highest amplitude. The research study found that the second harmonic is maximized when the operating point is set to its minimum value. This finding has applications in several fields, including telecommunications and energy.
Mach-Zender modulator, spectrum analyzer, ÑпекÑÐ¾Ñ Ð°Ð½Ð°Ð»Ð¸Ð·Ð°ÑоÑ, вÑоÑÐ°Ñ Ð³Ð°Ñмоника, LFM signal, Ð²Ð¾Ð»Ð¾ÐºÐ¾Ð½Ð½Ð°Ñ Ð¾Ð¿Ñика, лазеÑ, полÑволÑновое напÑÑжение, Ñдвоение ÑаÑÑоÑÑ, laser, ÐÐ°Ñ Ð°-Ð¦ÐµÐ½Ð´ÐµÑ Ð¼Ð¾Ð´ÑлÑÑоÑ, half-wave voltage, лÑм Ñигнал, second harmonic, frequency doubling, fiber optics
Mach-Zender modulator, spectrum analyzer, ÑпекÑÐ¾Ñ Ð°Ð½Ð°Ð»Ð¸Ð·Ð°ÑоÑ, вÑоÑÐ°Ñ Ð³Ð°Ñмоника, LFM signal, Ð²Ð¾Ð»Ð¾ÐºÐ¾Ð½Ð½Ð°Ñ Ð¾Ð¿Ñика, лазеÑ, полÑволÑновое напÑÑжение, Ñдвоение ÑаÑÑоÑÑ, laser, ÐÐ°Ñ Ð°-Ð¦ÐµÐ½Ð´ÐµÑ Ð¼Ð¾Ð´ÑлÑÑоÑ, half-wave voltage, лÑм Ñигнал, second harmonic, frequency doubling, fiber optics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
