<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ð’ данной работе проведено поÑтроение Ñекторной трехмерной геолого-геомеханичеÑкой модели меÑÑ‚Ð¾Ñ€Ð¾Ð¶Ð´ÐµÐ½Ð¸Ñ Ð¥. Сделан акцент на таких ÑвлениÑÑ… как утечка жидкоÑти ГРП и анализ влиÑÐ½Ð¸Ñ Ð¿Ñ€Ð¾Ð½Ð¸Ñ†Ð°ÐµÐ¼Ð¾Ñти плаÑта на ÑвойÑтва трещины по математичеÑкой модели Картера. ОпиÑана методика поÑÑ‚Ñ€Ð¾ÐµÐ½Ð¸Ñ 3D геомеханичеÑкой модели Ñ Ð¸Ñпользованием данных иÑÑледований керна и геофизичеÑкой иÑÑледований Ñкважин. Проведена калибровка геомеханичеÑкой модели. Проведена оценка прироÑта дебита Ð´Ð»Ñ Ñкважины Ñ ÑƒÑ‡ÐµÑ‚Ð¾Ð¼ Ñмоделированного дизайна трещины ГРП методом виртуальных перфораций в гидродинамичеÑком ÑимулÑторе. ÐŸÐ¾Ð»ÑƒÑ‡ÐµÐ½Ð½Ð°Ñ Ð² рамках работы Ñ‚Ñ€ÐµÑ…Ð¼ÐµÑ€Ð½Ð°Ñ Ð³ÐµÐ¾Ð»Ð¾Ð³Ð¾-геомеханичеÑÐºÐ°Ñ Ð¼Ð¾Ð´ÐµÐ»ÑŒ дает предÑтавление о раÑпределении упруго-прочноÑтных ÑвойÑтвах горных пород и раÑÐ¿Ñ€ÐµÐ´ÐµÐ»ÐµÐ½Ð¸Ñ Ð½Ð°Ð¿Ñ€Ñженного ÑоÑтоÑниÑ, а также может быть иÑпользована Ð´Ð»Ñ Ð¿Ñ€Ð¾ÐµÐºÑ‚Ð¸Ñ€Ð¾Ð²Ð°Ð½Ð¸Ñ Ð¼Ð¾Ð´ÐµÐ»ÐµÐ¹ трещины ГРП.
In this paper the construction of sector 3D geological and geomechanical model of field X is carried out. The emphasis is made on such phenomena as leakage of hydraulic fracturing fluid and analysis of the influence of formation permeability on fracture properties by Carters mathematical model. The methodology of 3D geomechanical model construction using core and well geophysical survey data is described. Calibration of the geomechanical model was carried out. Estimation of flow rate increment for the well taking into account the modeled fracture design by the method of virtual perforations in the hydrodynamic simulator was carried out. The 3D geological-geomechanical model obtained in the framework of the work gives an idea of the distribution of elastic-strength properties of rocks and stress state distribution, and can be used for designing hydraulic fracturing.
rock failure criterion, ÐеÑÑедобÑÑа, геолого-Ð³ÐµÐ¾Ð¼ÐµÑ Ð°Ð½Ð¸ÑеÑÐºÐ°Ñ Ð¼Ð¾Ð´ÐµÐ»Ñ, гидÑавлиÑеÑкий ÑазÑÑв плаÑÑа, ÑÑеÑка жидкоÑÑи гÑп, кÑиÑеÑий ÑазÑÑÑÐµÐ½Ð¸Ñ Ð¿Ð¾ÑодÑ, hydrodynamic model, hydraulic formation rupture, hydraulic fracturing fluid leakage, geological-geomechanical model, гидÑодинамиÑеÑÐºÐ°Ñ Ð¼Ð¾Ð´ÐµÐ»Ñ
rock failure criterion, ÐеÑÑедобÑÑа, геолого-Ð³ÐµÐ¾Ð¼ÐµÑ Ð°Ð½Ð¸ÑеÑÐºÐ°Ñ Ð¼Ð¾Ð´ÐµÐ»Ñ, гидÑавлиÑеÑкий ÑазÑÑв плаÑÑа, ÑÑеÑка жидкоÑÑи гÑп, кÑиÑеÑий ÑазÑÑÑÐµÐ½Ð¸Ñ Ð¿Ð¾ÑодÑ, hydrodynamic model, hydraulic formation rupture, hydraulic fracturing fluid leakage, geological-geomechanical model, гидÑодинамиÑеÑÐºÐ°Ñ Ð¼Ð¾Ð´ÐµÐ»Ñ
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |