
Целью работы ÑвлÑетÑÑ Ð°Ð½Ð°Ð»Ð¸Ð· влиÑÐ½Ð¸Ñ Ñанкций на показатели ÑффективноÑти деÑтельноÑти 100 роÑÑийÑких банков, иÑÐ¿Ð¾Ð»ÑŒÐ·ÑƒÑ Ð¼ÐµÑ‚Ð¾Ð´ Difference-in-Difference. Ð’ рамках работы были решены Ñледующие задачи: – раÑÑмотрены теоретичеÑкие оÑновы оценки ÑффективноÑти банков, понÑтие ÑффективноÑти деÑтельноÑти банка, оÑновные методы оценки и показатели ÑффективноÑти, а также понÑтие и виды Ñанкций, влиÑние Ñанкций на показатели ÑффективноÑти; – проведен анализ банковÑкого Ñектора РоÑÑии, раÑÑмотрены оÑновные показатели и ключевые ÑÐ¾Ð±Ñ‹Ñ‚Ð¸Ñ Ñектора в период Ñ 2021 по 2023 годы, а также положение Ñектора в уÑловиÑÑ… Ñанкций; – ÑоÑтавлена выборка из 100 роÑÑийÑких банков, отÑортированных по размеру активов и проведен клаÑтерный анализ по группам методом k-Ñредних на Python; – определены и раÑÑчитаны показатели ÑффективноÑти Ñ Ð¿Ð¾Ð¼Ð¾Ñ‰ÑŒÑŽ пакета MS Office (Excel); – поÑтроена модель и проведен анализ методом Difference-in-Difference Ñ Ð¸Ñпользованием программного обеÑÐ¿ÐµÑ‡ÐµÐ½Ð¸Ñ STATA, проинтерпретированы полученные результаты. ИÑточниками информации выÑтупили данные отечеÑтвенной и зарубежной научно-иÑÑледовательÑкой литературы, официальные Интернет-реÑурÑÑ‹, аналитичеÑкие агентÑтва, Ð¿ÑƒÐ±Ð»Ð¸ÐºÑƒÐµÐ¼Ð°Ñ Ð¾Ñ‚Ñ‡ÐµÑ‚Ð½Ð¾Ñть кредитных организаций Банком РоÑÑии.
The purpose of the work is to analyze the impact of sanctions on the performance indicators of 100 Russian banks using the Difference-in-Difference method. As part of the work, the research set the following goals: – the theoretical foundations of evaluating the effectiveness of banks, the concept of the effectiveness of the bank, the main methods of evaluation and performance indicators, as well as the concept and types of sanctions, the impact of sanctions on performance indicators are considered; – the analysis of the banking sector of the Russian Federation was carried out, the main indicators and key events of the sector in the period from 2021 to 2023, as well as the situation of the sector under sanctions were considered; – a sample of 100 Russian banks was compiled, sorted by asset size, and a cluster analysis was performed by groups using the k-means method in Python; – performance indicators have been determined and calculated using the MS Office (Excel) package; – a model was built and analyzed using the Difference-in-Difference method using STATA software, and the results were interpreted. The sources of information were data from domestic and foreign scientific research literature, official Internet resources, analytical agencies, published reports of credit institutions by the Bank of Russia.
banking sector, показаÑели ÑÑÑекÑивноÑÑи банковÑкой деÑÑелÑноÑÑи, sanctions, difference-in-difference, ÑанкÑии, банковÑкий ÑекÑоÑ, banking performance indicators
banking sector, показаÑели ÑÑÑекÑивноÑÑи банковÑкой деÑÑелÑноÑÑи, sanctions, difference-in-difference, ÑанкÑии, банковÑкий ÑекÑоÑ, banking performance indicators
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
