
Ð’ данной работе иÑÑледуетÑÑ Ð²Ð»Ð¸Ñние ÑÐ¼ÐµÑ‰ÐµÐ½Ð¸Ñ Ñ‚Ð¾Ñ‡ÐµÐº Ñреды на раÑпроÑтранение Ñнергии в ней. Ð’ рамках Ñтого иÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ñ Ð±Ñ‹Ð»Ð¸ раÑÑмотрены Ñледующие одномерные модели Ñред: 1) ÐšÐ¾Ð½Ñ‚Ð¸Ð½ÑƒÐ°Ð»ÑŒÐ½Ð°Ñ Ð¼Ð¾Ð´ÐµÐ»ÑŒ. 2) ДиÑÐºÑ€ÐµÑ‚Ð½Ð°Ñ Ð¼Ð¾Ð´ÐµÐ»ÑŒ Ñ Ð»Ð¸Ð½ÐµÐ¹Ð½Ð¾Ð¹ Ñилой взаимодейÑÑ‚Ð²Ð¸Ñ Ñ‡Ð°Ñтиц. 3) ДиÑÐºÑ€ÐµÑ‚Ð½Ð°Ñ Ð¼Ð¾Ð´ÐµÐ»ÑŒ Ñ Ð½ÐµÐ»Ð¸Ð½ÐµÐ¹Ð½Ð¾Ð¹ Ñилой взаимодейÑÑ‚Ð²Ð¸Ñ Ñ‡Ð°Ñтиц. Ð’ результате были получены ÑоотношениÑ, опиÑывающие Ð´Ð²Ð¸Ð¶ÐµÐ½Ð¸Ñ ÑнергетичеÑких центров возмущений в Ñтих Ñредах. Показано, что еÑли Ð¿ÐµÑ€ÐµÐ¼ÐµÑ‰ÐµÐ½Ð¸Ñ Ñ‡Ð°Ñтиц Ñреды значительны, то необходимо учитывать Ð¿ÐµÑ€ÐµÐ½Ð¾Ñ Ñнергии, вызванный механичеÑким Ñмещением чаÑтиц Ñреды. Введены понÑÑ‚Ð¸Ñ Ð¸Ð¼Ð¿ÑƒÐ»ÑŒÑного момента и импульÑного центра возмущениÑ, Ñ Ð¿Ð¾Ð¼Ð¾Ñ‰ÑŒÑŽ которых на оÑновании чиÑленного Ð¼Ð¾Ð´ÐµÐ»Ð¸Ñ€Ð¾Ð²Ð°Ð½Ð¸Ñ Ð¿Ñ€ÐµÐ´Ð»Ð¾Ð¶ÐµÐ½ ÑпоÑоб приблизительного Ð¾Ð¿Ñ€ÐµÐ´ÐµÐ»ÐµÐ½Ð¸Ñ ÑкороÑти ÑнергетичеÑкого центра Ð²Ð¾Ð·Ð¼ÑƒÑ‰ÐµÐ½Ð¸Ñ Ð² Ñлучае ударного нагружениÑ. Показано, что такой ÑпоÑоб может быть иÑпользован как Ð´Ð»Ñ Ñред Ñ Ð»Ð¸Ð½ÐµÐ¹Ð½Ð¾Ð¹ Ñилой взаимодейÑÑ‚Ð²Ð¸Ñ Ñ‡Ð°Ñтиц, так и Ð´Ð»Ñ Ñред Ñ Ð½ÐµÐ»Ð¸Ð½ÐµÐ¹Ð½Ð¾Ð¹ Ñилой взаимодейÑÑ‚Ð²Ð¸Ñ Ñ‡Ð°Ñтиц.
In this work we investigate the effect of displacement of points in the medium on the propagation of energy in it. As part of this study, the following one-dimensional models of media were considered: 1) Continuous elastic model. 2) Discrete model with linear force of interaction of particles. 3) Discrete model with nonlinear force of interaction of particles. As a result, the relations describing movements of energy centers of disturbances in these media have been obtained. It is shown that if displacements of particles of the medium are significant, it is necessary to take into account the energy transfer caused by mechanical displacement of particles of the medium. The concepts of impulse moment and impulse center of perturbation are introduced, with the help of which, based on numerical modeling, the method of approximate determination of the energy center of perturbation, in the case of shock loading is proposed. It is shown that this method can be used both for media with linear particle interaction force and for media with nonlinear particle interaction force.
Ð±Ð°Ð»Ð°Ð½Ñ Ð¿Ð¾Ñока ÑнеÑгии, energy center, ÑаÑпÑоÑÑÑанение ÑнеÑгии, ÑнеÑгеÑиÑеÑкий ÑенÑÑ, динамика маÑÑÑ Ð¸ ÑнеÑгии, numerical simulation, energy propagation, mass and energy dynamics, ÑиÑленное моделиÑование, energy flow balance
Ð±Ð°Ð»Ð°Ð½Ñ Ð¿Ð¾Ñока ÑнеÑгии, energy center, ÑаÑпÑоÑÑÑанение ÑнеÑгии, ÑнеÑгеÑиÑеÑкий ÑенÑÑ, динамика маÑÑÑ Ð¸ ÑнеÑгии, numerical simulation, energy propagation, mass and energy dynamics, ÑиÑленное моделиÑование, energy flow balance
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
