
Тема выпуÑкной квалификационной работы: «ИÑÑледование и моделирование кремниевых нанонитей, декорированных наночаÑтицами Ñеребра». Ð’ результате проделанной работы была Ñоздана ÐºÐ¾Ð¼Ð¿ÑŒÑŽÑ‚ÐµÑ€Ð½Ð°Ñ Ð¼Ð¾Ð´ÐµÐ»ÑŒ в Ñреде Comsol Multiphysics КÐÐ. Были выÑвлены факторы, влиÑющие на ЛПР, а также Ñтепени их влиÑниÑ. Ðаиболее Ñильным фактором, влиÑющем на положение ЛПРÑвлÑетÑÑ Ð´Ð¸ÑлектричеÑкое окружение. ЧаÑтиц радиуÑом 10 нм, в воздухе имеющие ЛПРна длине волны примерно 360 нм, на кремнии будут иметь Ñ€ÐµÐ·Ð¾Ð½Ð°Ð½Ñ Ð½Ð° длине волны примерно 600 нм. Также на положение ЛПРв меньше мере влиÑет размер чаÑтиц и взаимодейÑтвие Ñ Ð´Ñ€ÑƒÐ³Ð¸Ð¼Ð¸ чаÑтицами. ПоÑледнее в Ñвою очередь завиÑит от раÑÑтоÑÐ½Ð¸Ñ Ð¼ÐµÐ¶Ð´Ñƒ чаÑтицами и ориентации ÑлектричеÑкого полÑ. УÑиление Ð¿Ð¾Ð»Ñ Ð²Ð±Ð»Ð¸Ð·Ð¸ наночаÑтиц более, чем в 100 раз, также можно получить Ñ Ð¿Ð¾Ð¼Ð¾Ñ‰ÑŒÑŽ ÑÐ¾Ð·Ð´Ð°Ð½Ð¸Ñ ÐºÐ»Ð°Ñтеров из наночаÑтиц и диÑлектричеÑкого окружениÑ. Результаты данной работы могут быть применены в анализе ÑкÑпериментальных Ñпектров КÐÐ, декорированных металличеÑкими наночаÑтицами, а также в Ð¿Ñ€Ð¾Ð³Ð½Ð¾Ð·Ð¸Ñ€Ð¾Ð²Ð°Ð½Ð¸Ñ ÑвойÑтв Ñтих Ñтруктур.
The subject of the graduate qualification work is «Study and simulation of silicon nanowires decorated with silver nanoparticles». As a result of the work done, a computer model was created in Comsol Multiphysics for SiNWs decorated with silver nanoparticles, and the components of this model were studied. The factors influencing the LSPR, as well as the degree of their influence, were identified. The strongest factor influencing the position of the LSPR is the dielectric environment. For particles with a radius of 10 nm in air an LSPR is obtained at a wavelength of approximately 360 nm, on silicon a resonance is at a wavelength of approximately 600 nm. Also, the position of the LSPR is less affected by the particle size and interaction with other particles. The second effect depends on the distance between the particles and the orientation of the electric field. Strengthening the field near nanoparticles by more than 100 times can also be obtained by creating clusters of nanoparticles and a dielectric environment. The results of this work can be applied in the analysis of the experimental spectra of SiNWs decorated with metal nanoparticles, as well as in predicting the properties of these structures.
наноплазмоника, silver nanoparticles, spherical nanoparticles, кÑемниевÑе нанониÑи, ÑеÑебÑÑнÑе наноÑаÑÑиÑÑ, ÑÑеÑиÑеÑкие наноÑаÑÑиÑÑ, nanoplasmonics, ÐомпозиÑионнÑе маÑеÑиалÑ, ÐомпÑÑÑеÑное моделиÑование, silicon nanowires
наноплазмоника, silver nanoparticles, spherical nanoparticles, кÑемниевÑе нанониÑи, ÑеÑебÑÑнÑе наноÑаÑÑиÑÑ, ÑÑеÑиÑеÑкие наноÑаÑÑиÑÑ, nanoplasmonics, ÐомпозиÑионнÑе маÑеÑиалÑ, ÐомпÑÑÑеÑное моделиÑование, silicon nanowires
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
