Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Обнаружение фишинга с использованием методов машинного обучения

выпускная квалификационная работа бакалавра

Обнаружение фишинга с использованием методов машинного обучения

Abstract

Целью работы является определение наиболее эффективного метода машинного обучения для обнаружения фишинговых веб-сайтов. Предметом исследования являются современные методы обнаружения фишинговых веб-сайтов. Задачи, решаемые в ходе исследования: 1. Сформировать набор данных и разработать средство расширения набора данных. 2. Провести анализ применяемых методов для обнаружения фишинговых веб-сайтов, выбрать методы для дальнейшего исследования. 3. Разработать программный прототип для обнаружения фишинговых веб-сайтов с помощью выбранных методов. 4. Провести сравнительный анализ методов машинного обучения в обнаружении фишинговых веб-сайтов. В ходе работы были исследованы применяемые методы для обнаружения фишинговых веб-сайтов. Была решена задача формирования набора данных. В результате работы были разработаны программный прототип для обнаружения фишинговых веб-сайтов и средство расширения набора данных, был проведен сравнительный анализ методов машинного обучения для обнаружения фишинговых веб-сайтов.

The aim of the work is to determine the most effective machine learning method for detecting phishing websites. The subject of the study is modern methods for detecting phishing websites. Tasks to be solved in the course of the study: 1. Form a data set and develop a tool for extending the data set. 2. Conduct an analysis of the methods used to detect phishing websites, select methods for further research. 3. Develop a software prototype to detect phishing websites using selected methods. 4. Conduct a comparative analysis of machine learning methods in detecting phishing websites. In the course of the work, the methods used to detect phishing websites were investigated. The problem of forming a data set was solved. As a result of the work, a software prototype for detecting phishing websites and a tool for expanding the data set were developed, and a comparative analysis of machine learning methods for detecting phishing websites was carried out.

Keywords

веб-сайты, классификация, machine learning, websites, classification, машинное обучение, фишинг, phishing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!