Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Влияние структуры резьбы на прочность установки Ð¼ÐµÐ´Ð¸Ñ†Ð¸Ð½ÑÐºÐ¸Ñ Ð²Ð¸Ð½Ñ‚Ð¾Ð²

выпускная квалификационная работа бакалавра

Влияние структуры резьбы на прочность установки Ð¼ÐµÐ´Ð¸Ñ†Ð¸Ð½ÑÐºÐ¸Ñ Ð²Ð¸Ð½Ñ‚Ð¾Ð²

Abstract

Тема данной работы – Распознание «коротких» аудиосигналов на основе нейронных сетей идентификации. Целью работы является исследование возможности распознания аудиосигналов при помощи нейронной сети. Объектом работы является параллельная модель свёрточно-рекуррентной нейронной сети. Предметом работы является распознание аудиосигнала при помощи нейронной сети. В ходе работы были изучены существующие методы распознания аудиосигналов при помощи нейросетей. Также была рассмотрена актуальность данной работы в повседневной среде. В ходе работы был разработан новый подход, основанный на применении параллельной модели свёрточно-рекуррентной нейронной сети. Работа по обучению нейронной сети производилась в программной среде Google Collaboratory для языка Python 3.10.5. Для подключения аппаратного ускорения была применена библиотека keras, позволяющая распараллеливать вычислительные процессы. Для распознавания и анализа аудиосигнала была применена библиотека librosa, позволяющая считывать аудиосигналы и строить спектрограммы. Полученные в результате работы алгоритмы позволяют добиться постоянного снижения величины ошибки обучения.

The topic of this work is Recognition of "short" audio signals based on neural networks of identification. The aim of the work is to study the possibility of recognizing audio signals using a neural network. The object of the work is a parallel model of a convolutional-recurrent neural network. The subject of the work is the recognition of an audio signal using a neural network.In the course of the work, existing methods for recognizing audio signals using neural networks were studied. The relevance of this work in the daily environment was also considered. In the course of the work, a new approach was developed, based on the use of a parallel model of a convolutional recurrent neural network. The work on training the neural network was carried out in the Google Collaboratory software environment for the Python 3.10.5 language. To connect hardware acceleration, the keras library was used, which allows parallelizing computational processes. To recognize and analyze the audio signal, the librosa library was used, which allows reading audio signal and building spectrograms. The algorithms obtained as a result of the work make it possible to achieve a constant decrease in the magnitude of the learning error.

Keywords

machine learning, машинное обучение, искусственные нейронные сети, распознание аудиосигналов, neural networks, audiosignal recognition

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?