
Тема выпуÑкной квалификационной работы: «УÑтойчивоÑть плоÑкой формы изгиба шарнирно-опертой балки».Ð”Ð°Ð½Ð½Ð°Ñ Ñ€Ð°Ð±Ð¾Ñ‚Ð° поÑвÑщена иÑÑледованию геометричеÑки нелинейной шарнирно-опертой балки при чиÑтом изгибе. Задачи, которые решалиÑÑŒ в ходе иÑÑледованиÑ:Решение геометричеÑки нелинейной проблемы Ñтатики шарнирно-опертой балки при чиÑтом изгибе;Решение задачи уÑтойчивоÑти шарнирно-опертой балки при чиÑтом изгибе в точной поÑтановке;Решение задачи уÑтойчивоÑти шарнирно-опертой балки при чиÑтом изгибе в Ñильно-линеаризованной поÑтановке;Получение ÐºÑ€Ð¸Ñ‚ÐµÑ€Ð¸Ñ Ð´Ð»Ñ Ð½Ð°Ñ…Ð¾Ð¶Ð´ÐµÐ½Ð¸Ñ ÐºÑ€Ð¸Ñ‚Ð¸Ñ‡ÐµÑкого момента.   В данной работе Ð´Ð»Ñ Ñ€ÐµÑˆÐµÐ½Ð¸Ñ Ð·Ð°Ð´Ð°Ñ‡Ð¸ уÑтойчивоÑти применÑетÑÑ Ð¿Ñ€Ð¾ÑтранÑÑ‚Ð²ÐµÐ½Ð½Ð°Ñ Ð¼Ð¾Ð´ÐµÐ»ÑŒ ÑтержнÑ, ÑƒÑ‡Ð¸Ñ‚Ñ‹Ð²Ð°ÑŽÑ‰Ð°Ñ Ð²Ñе виды деформации (раÑÑ‚Ñжение, Ñдвиг, изгиб и кручение) и, ÑоответÑтвенно, раÑÑматриваютÑÑ Ñ€Ð°Ð·Ð»Ð¸Ñ‡Ð½Ñ‹Ðµ виды жеÑткоÑтей. Ð’ данной работе была применена Ð²Ð°Ñ€Ð¸Ð°Ñ†Ð¸Ð¾Ð½Ð½Ð°Ñ Ð¿Ð¾Ñтановка задачи уÑтойчивоÑти, ÐºÐ¾Ñ‚Ð¾Ñ€Ð°Ñ Ñформулирована, как поиÑк точки минимума функционала Лагранжа. Функционал уÑтойчивоÑти равен второй вариации функционала Лагранжа, а в Ñвою очередь уравнение уÑтойчивоÑти — Ñто ÑƒÑ€Ð°Ð²Ð½ÐµÐ½Ð¸Ñ Ðйлера Ð´Ð»Ñ Ñ„ÑƒÐ½ÐºÑ†Ð¸Ð¾Ð½Ð°Ð»Ð° уÑтойчивоÑти.   В данной работе было получено решение задачи уÑтойчивоÑти. Ð’ качеÑтве результата получен критерий Ð½Ð°Ñ…Ð¾Ð¶Ð´ÐµÐ½Ð¸Ñ ÐºÑ€Ð¸Ñ‚Ð¸Ñ‡ÐµÑкого момента в виде проÑтого тригонометричеÑкого уравнениÑ. Данное уравнение неÑложно решить чиÑленными методами Ñ Ð¿Ð¾Ð¼Ð¾Ñ‰ÑŒÑŽ любого программного комплекÑа. Полученные в ходе дипломной работы Ñ€ÐµÑˆÐµÐ½Ð¸Ñ Ð¼Ð¾Ð³ÑƒÑ‚ применÑтьÑÑ Ð¿Ñ€Ð¸ проектировании новых конÑтрукций, а также при реконÑтрукции Ñооружений различного назначениÑ.  Â
The subject of the graduate qualification work is “Stability of a flat form of bending of a hinged beamâ€.The given work is devoted to studying a geometrically nonlinear articulated beam with pure bending. Tasks that were solved in the course of the study:Solution of the geometrically nonlinear problem of the statics of a hinged beam under pure bending;Solution of the problem of stability of a hinged beam under pure bending in the exact formulation;Solution of the problem of stability of a hinged beam under pure bending in a strongly linearized formulation;Obtaining a criterion for finding the critical moment.    The fulfilled work came out with a solution to the stability problem, to solve the problem of stability, a spatial model of the rod is used, which considers all types of deformation (tension, shear, bending, and torsion) and, for a complete understanding, various types of stiffness are considered. In this paper, a variational statement of the stability problem was applied, which is formulated as a search for the minimum point of the Lagrange functional. The stability functional is equal to the Lagrange function's second variation; in turn, the stability equation is the Euler equation for the stability function.   In this paper, a solution to the stability problem was obtained. As a result, a criterion for finding the critical moment is received in the form of a simple trigonometric equation. This equation is easy to solve by numerical methods using any software package, for this case Mathcad has been used. The solutions obtained in the thesis work can be used in the design of new structures, as well as in the reconstruction of structures for various purposes.
critical load, поÑеÑÑ Ð¿Ð»Ð¾Ñкой ÑоÑÐ¼Ñ ÑавновеÑиÑ, following moment, loss of flat equilibrium, pure bending, ÑÑÑойÑивоÑÑÑ, stability, geometrically exact theory of rods, балка, геомеÑÑиÑеÑки ÑоÑÐ½Ð°Ñ ÑеоÑÐ¸Ñ ÑÑеÑжней, кÑиÑиÑеÑÐºÐ°Ñ Ð½Ð°Ð³ÑÑзка, beam, ÑиÑÑÑй изгиб, ÑледÑÑий моменÑ
critical load, поÑеÑÑ Ð¿Ð»Ð¾Ñкой ÑоÑÐ¼Ñ ÑавновеÑиÑ, following moment, loss of flat equilibrium, pure bending, ÑÑÑойÑивоÑÑÑ, stability, geometrically exact theory of rods, балка, геомеÑÑиÑеÑки ÑоÑÐ½Ð°Ñ ÑеоÑÐ¸Ñ ÑÑеÑжней, кÑиÑиÑеÑÐºÐ°Ñ Ð½Ð°Ð³ÑÑзка, beam, ÑиÑÑÑй изгиб, ÑледÑÑий моменÑ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
