<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Тема выпуÑкной квалификационной работы: «Обнаружение клаÑÑов атак Ñ Ð¸Ñпользованием LSTM-Ñетей».Целью работы ÑвлÑетÑÑ Ð¾Ð±Ð½Ð°Ñ€ÑƒÐ¶ÐµÐ½Ð¸Ðµ и клаÑÑÐ¸Ñ„Ð¸ÐºÐ°Ñ†Ð¸Ñ Ñетевых атак Ñ Ð¸Ñпользованием LSTM-Ñетей. Предметом иÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ñ ÑвлÑÑŽÑ‚ÑÑ Ñовременные методы автоматизированного Ð¾Ð±Ð½Ð°Ñ€ÑƒÐ¶ÐµÐ½Ð¸Ñ Ñетевых атак. Задачи, решаемые в ходе иÑÑледованиÑ:Ðнализ набора данных и подготовка данных. Обучение LSTM Ñети Ð´Ð»Ñ Ð¾Ð±Ð½Ð°Ñ€ÑƒÐ¶ÐµÐ½Ð¸Ñ Ð¸ клаÑÑификации Ñетевых атак. Оценка точноÑти работы Ñозданного ÑредÑтва. Ð’ ходе работы была иÑÑледована архитектура нейронной Ñети LSTM и Ñтруктура набора данных UNSW-FB15. Были проанализированы Ñовременные иÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ñ Ð² облаÑти Ð¾Ð±Ð½Ð°Ñ€ÑƒÐ¶ÐµÐ½Ð¸Ñ Ñетевых атак.Ð’ результате работы было разработано ÑредÑтво Ð¾Ð±Ð½Ð°Ñ€ÑƒÐ¶ÐµÐ½Ð¸Ñ Ñетевых атак Ñ Ð¿Ð¾Ð¼Ð¾Ñ‰ÑŒÑŽ Ñети LSTM, была продемонÑтрирована ÑффективноÑть ÑредÑтва. Был Ñделан вывод, что LSTM Ñеть отлично подходит Ð´Ð»Ñ Ð·Ð°Ð´Ð°Ñ‡Ð¸ Ð¾Ð±Ð½Ð°Ñ€ÑƒÐ¶ÐµÐ½Ð¸Ñ Ñетевых атак. Полученные результаты могут быть иÑпользованы в качеÑтве оÑновы Ð´Ð»Ñ Ð¿Ñ€Ð¾ÐµÐºÑ‚Ð¸Ñ€Ð¾Ð²Ð°Ð½Ð¸Ñ ÑиÑтем Ð¾Ð±Ð½Ð°Ñ€ÑƒÐ¶ÐµÐ½Ð¸Ñ Ñетевых атак.
The topic of the graduate qualification work is «Detection of attack classes using LSTM networks». The purpose of the study is detection and classification of network attacks using LSTM networks. The subject of the work is modern methods of automated detection of network attacks. The research set the following goals:Data set analysis and data preparation.LSTM network training for detecting and classifying network attacks.Evaluation of the accuracy of the created toolDuring the work the architecture of the LSTM neural network and the structure of the UNSW-FB15 dataset were studied. Modern studies in network attacks detection area were analyzed.The work resulted in development of a tool to detect network attacks using the LSTM network. Tool has satisfactory indicators in quality of network attacks detection. The studying point to conclusion that LSTM network is great for the task of detecting network attacks.The results could be used as a base for network attack detection systems designing.
principal component analysis, classification of attacks, recurrent neural networks, клаÑÑиÑикаÑÐ¸Ñ Ð°Ñак, LSTM, ÑекÑÑÑенÑнÑе нейÑоннÑе ÑеÑи, меÑод главнÑÑ ÐºÐ¾Ð¼Ð¿Ð¾Ð½ÐµÐ½Ñ
principal component analysis, classification of attacks, recurrent neural networks, клаÑÑиÑикаÑÐ¸Ñ Ð°Ñак, LSTM, ÑекÑÑÑенÑнÑе нейÑоннÑе ÑеÑи, меÑод главнÑÑ ÐºÐ¾Ð¼Ð¿Ð¾Ð½ÐµÐ½Ñ
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |