
Ð”Ð°Ð½Ð½Ð°Ñ Ñ€Ð°Ð±Ð¾Ñ‚Ð° поÑвÑщена чиÑленному моделированию роевого Ð¿Ð¾Ð²ÐµÐ´ÐµÐ½Ð¸Ñ Ð³Ñ€ÑƒÐ¿Ð¿Ñ‹ дронов Ð´Ð»Ñ Ð¿Ð¾Ð»ÑƒÑ‡ÐµÐ½Ð¸Ñ ÑƒÑтойчивой Ñтруктуры различного вида. Задачи, решаемые в данной работе: 1. РаÑÑмотрена актуальноÑть разработки алгоритмов роевого поведениÑ. 2. Подготовлена чиÑÐ»ÐµÐ½Ð½Ð°Ñ Ð¼Ð¾Ð´ÐµÐ»ÑŒ Ñ€Ð¾Ñ Ð´Ñ€Ð¾Ð½Ð¾Ð². 3. Проведены первичные ÑимулÑции Ñ Ð¿Ð¾Ñледующим анализом полученной Ñтруктуры. 4. ОÑущеÑтвлена Ð¾Ð¿Ñ‚Ð¸Ð¼Ð¸Ð·Ð°Ñ†Ð¸Ñ Ð¼Ð¾Ð´ÐµÐ»Ð¸ Ð´Ð»Ñ Ð´Ð¾ÑÑ‚Ð¸Ð¶ÐµÐ½Ð¸Ñ Ð±Ð¾Ð»ÐµÐµ уÑтойчивой Ñтруктуры. 5. Произведена корректировка модели Ð´Ð»Ñ Ð¿Ð¾Ð»ÑƒÑ‡ÐµÐ½Ð¸Ñ Ñтруктуры типа “цепьâ€. 6. Проведено иÑÑледование завиÑимоÑти Ñтруктур Ñ€Ð¾Ñ Ð¾Ñ‚ типов и компоновки датчиков. Ð”Ð»Ñ ÑÐ¾Ð·Ð´Ð°Ð½Ð¸Ñ Ð¼Ð°Ñ‚ÐµÐ¼Ð°Ñ‚Ð¸Ñ‡ÐµÑкой модели была изучена Ð¸Ð½Ñ‚ÐµÐ³Ñ€Ð¸Ñ€Ð¾Ð²Ð°Ð½Ð½Ð°Ñ Ñреда разработки PyCharm Ð´Ð»Ñ Ñзыка Ð¿Ñ€Ð¾Ð³Ñ€Ð°Ð¼Ð¼Ð¸Ñ€Ð¾Ð²Ð°Ð½Ð¸Ñ Python, а также библиотеки: NumPy – Ð´Ð»Ñ Ð²Ñ‹Ð¿Ð¾Ð»Ð½ÐµÐ½Ð¸Ñ Ð¼Ð°Ñ‚Ñ€Ð¸Ñ‡Ð½Ñ‹Ñ… вычиÑлений и Matplotlib – Ð´Ð»Ñ Ð²Ñ‹Ð²Ð¾Ð´Ð° графиков и ÑÐ¾Ð·Ð´Ð°Ð½Ð¸Ñ Ð°Ð½Ð¸Ð¼Ð°Ñ†Ð¸Ð¹. Ð¡Ð¾Ð·Ð´Ð°Ð½Ð½Ð°Ñ Ñ‚Ð°ÐºÐ¸Ð¼ образом модель позволила не только наглÑдно предÑтавлÑть процеÑÑ Ñборки Ñ€Ð¾Ñ Ñ ÑƒÑ‡Ñ‘Ñ‚Ð¾Ð¼ времени, но и запиÑывать результаты ÑимулÑций Ð´Ð»Ñ Ð¿Ð¾Ñледующего воÑÐ¿Ñ€Ð¾Ð¸Ð·Ð²ÐµÐ´ÐµÐ½Ð¸Ñ Ð¸ анализа. Ð’ результате удалоÑÑŒ не только получить регулÑрную Ñтруктуру роÑ, но подтвердить выдвинутую гипотезу о её криÑталличеÑкой природе – как Ð´Ð»Ñ ÑферичеÑкого поÑтроениÑ, так и Ð´Ð»Ñ ÐºÐ¾Ð½Ñ„Ð¸Ð³ÑƒÑ€Ð°Ñ†Ð¸Ð¸ типа «цепь». Полученные результаты можно иÑпользовать при ÑкÑпериментах Ñ Ñ€ÐµÐ°Ð»ÑŒÐ½Ñ‹Ð¼Ð¸ БПЛÐ.
This work is devoted to the numerical modeling of the behavior of the group of drones with the goal of obtaining different types of stable structure. Tasks to be solved in this work: 1. Relevance of the development of swarm behavior algorithms has been considered. 2. The numerical model of drones swarm has been prepared. 3. The initial simulations have been conducted with the consequent analysis of the swarm structure. 4. The model has been optimized based on the results of the analysis in order to obtain a more stable structure. 5. The model has been adjusted in order to obtain another swarm configuration (“chainâ€). 6. Swarms with different types of sensor arrays have been compared with each other. As a means of mathematical modelling PyCharm IDE for Python and NumPy (matrix operations) and Matplotlib (animation) libraries for it have been mastered. Thus, the model enabled not only demonstrating real-time assembly process, but also recording the results for subsequent analysis. As a result regular swarm structure has been obtained and the hypothesis of its lattice-like nature has been confirmed – for both spherical and chain-like configurations. The results can be implemented in experiments with real-life UAVs.
numerical simulation, swarm technologies, ÑпÑавление, ÑоевÑе ÑÐµÑ Ð½Ð¾Ð»Ð¾Ð³Ð¸Ð¸, drone, ÑиÑленное моделиÑование, control, дÑон
numerical simulation, swarm technologies, ÑпÑавление, ÑоевÑе ÑÐµÑ Ð½Ð¾Ð»Ð¾Ð³Ð¸Ð¸, drone, ÑиÑленное моделиÑование, control, дÑон
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
