Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Моделирование роевого поведения группы дронов при использовании ÑƒÐ¿Ñ€Ð°Ð²Ð»ÑÑŽÑ‰Ð¸Ñ Ð°Ð»Ð³Ð¾Ñ€Ð¸Ñ‚Ð¼Ð¾Ð² на основе потенциала Леннарда-Джонсона

выпускная квалификационная работа бакалавра

Моделирование роевого поведения группы дронов при использовании ÑƒÐ¿Ñ€Ð°Ð²Ð»ÑÑŽÑ‰Ð¸Ñ Ð°Ð»Ð³Ð¾Ñ€Ð¸Ñ‚Ð¼Ð¾Ð² на основе потенциала Леннарда-Джонсона

Abstract

Данная работа посвящена численному моделированию роевого поведения группы дронов для получения устойчивой структуры различного вида. Задачи, решаемые в данной работе: 1. Рассмотрена актуальность разработки алгоритмов роевого поведения. 2. Подготовлена численная модель роя дронов. 3. Проведены первичные симуляции с последующим анализом полученной структуры. 4. Осуществлена оптимизация модели для достижения более устойчивой структуры. 5. Произведена корректировка модели для получения структуры типа “цепь”. 6. Проведено исследование зависимости структур роя от типов и компоновки датчиков. Для создания математической модели была изучена интегрированная среда разработки PyCharm для языка программирования Python, а также библиотеки: NumPy – для выполнения матричных вычислений и Matplotlib – для вывода графиков и создания анимаций. Созданная таким образом модель позволила не только наглядно представлять процесс сборки роя с учётом времени, но и записывать результаты симуляций для последующего воспроизведения и анализа. В результате удалось не только получить регулярную структуру роя, но подтвердить выдвинутую гипотезу о её кристаллической природе – как для сферического построения, так и для конфигурации типа «цепь». Полученные результаты можно использовать при экспериментах с реальными БПЛА.

This work is devoted to the numerical modeling of the behavior of the group of drones with the goal of obtaining different types of stable structure. Tasks to be solved in this work: 1. Relevance of the development of swarm behavior algorithms has been considered. 2. The numerical model of drones swarm has been prepared. 3. The initial simulations have been conducted with the consequent analysis of the swarm structure. 4. The model has been optimized based on the results of the analysis in order to obtain a more stable structure. 5. The model has been adjusted in order to obtain another swarm configuration (“chain”). 6. Swarms with different types of sensor arrays have been compared with each other. As a means of mathematical modelling PyCharm IDE for Python and NumPy (matrix operations) and Matplotlib (animation) libraries for it have been mastered. Thus, the model enabled not only demonstrating real-time assembly process, but also recording the results for subsequent analysis. As a result regular swarm structure has been obtained and the hypothesis of its lattice-like nature has been confirmed – for both spherical and chain-like configurations. The results can be implemented in experiments with real-life UAVs.

Keywords

numerical simulation, swarm technologies, управление, роевые Ñ‚ÐµÑ Ð½Ð¾Ð»Ð¾Ð³Ð¸Ð¸, drone, численное моделирование, control, дрон

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!