<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ð”Ð°Ð½Ð½Ð°Ñ Ñ€Ð°Ð±Ð¾Ñ‚Ð° поÑвÑщена повышению качеÑтва алгоритма машинного обучениÑ, извеÑтного как градиентный буÑтинг. Задачи, которые решалиÑÑŒ в ходе иÑÑледованиÑ: 1. Разбор работы алгоритма градиентного буÑтинга на деревьÑÑ… решений. 2. Ð ÐµÐ°Ð»Ð¸Ð·Ð°Ñ†Ð¸Ñ Ð³Ñ€Ð°Ð´Ð¸ÐµÐ½Ñ‚Ð½Ð¾Ð³Ð¾ буÑтинга на деревьÑÑ… решений Ñ ÑƒÐ»ÑƒÑ‡ÑˆÐµÐ½Ð¸Ñми Ð´Ð»Ñ Ñ€ÐµÑˆÐµÐ½Ð¸Ñ Ð·Ð°Ð´Ð°Ñ‡Ð¸ регреÑÑии. 3. Сравнение качеÑтва моделей градиентного буÑтинга Ñвоей реализациии Ñ Ð¸Ð·Ð²ÐµÑтными доÑтупными реализациÑми. 4. Изучение влиÑÐ½Ð¸Ñ Ñ€ÐµÐ°Ð»Ð¸Ð·Ð¾Ð²Ð°Ð½Ð½Ñ‹Ñ… идей по улучшению алгоритма на его качеÑтво. СпиÑок оÑновных иÑÑледуемых улучшений алгоритма: • ЧаÑтично-Ñлучайные пороги признаков. • ГиÑтограммы признаков Ñ Ð¿ÐµÑ€ÐµÐ¼ÐµÐ½Ð½Ð¾Ð¹ Ñеткой. • Ð¡Ð»ÑƒÑ‡Ð°Ð¹Ð½Ð°Ñ Ð´Ð¾Ð±Ð°Ð²ÐºÐ° к цене Ñ€Ð°Ð·Ð±Ð¸ÐµÐ½Ð¸Ñ Ð¿Ñ€Ð¸ поÑтроении деревьев решений. Ð’ результате был напиÑан программный модуль на Ñзыке C++ Ð´Ð»Ñ Ñзыка Python 3, который Ñодержит реализацию градиентного буÑтинга Ñ ÑƒÐ»ÑƒÑ‡ÑˆÐµÐ½Ð¸Ñми. Было проведено Ñравнение качеÑтва моделей машинного обучениÑ, полученных в ходе Ñвоей реализации, Ñ Ð¸Ð·Ð²ÐµÑтными доÑтупными реализациÑм на предмет качеÑтва моделей. Было иÑÑледовано влиÑние улучшений, предÑтавленных в работе, на качеÑтво моделей.
The given work is devoted to the quality improvement of the machine learning algorithm known as gradient boosting. The research set the following goals: 1. Understanding of the work of algorithm of gradient boosting based on regression trees in application to the solution of the regression problem. 2. Gradient boosting based on regression trees algorithm implementation. 3. Comparison of quality of gradient boosting models of the proposed implementation with known available implementations. 4. Research of impact of the implemented ideas of algorithm improvements on its quality. The list of main researched algorithm improvements: • Partially randomized feature thresholds. • Feature histograms with variable grid. • Random additive to the score of splits during decision tree fit. As the result, the program module with gradient boosting algorithm with im-provements implementation has been written in C++ language to use in Python 3 programming language. Comparison between the quality of machine learning models got with the proposed implementation and known available implementations has been done. The impact of the proposed improvements on the quality of the models has been studied.
ÑаÑÑиÑно-ÑлÑÑайнÑе деÑевÑÑ ÑеÑений, machine learning, задаÑа ÑегÑеÑÑии, decision trees, гиÑÑогÑÐ°Ð¼Ð¼Ñ Ð¿Ñизнаков, partially randomized decision trees, гÑадиенÑнÑй бÑÑÑинг, маÑинное обÑÑение, деÑевÑÑ ÑеÑений, features histograms, gradient boosting, regression problem
ÑаÑÑиÑно-ÑлÑÑайнÑе деÑевÑÑ ÑеÑений, machine learning, задаÑа ÑегÑеÑÑии, decision trees, гиÑÑогÑÐ°Ð¼Ð¼Ñ Ð¿Ñизнаков, partially randomized decision trees, гÑадиенÑнÑй бÑÑÑинг, маÑинное обÑÑение, деÑевÑÑ ÑеÑений, features histograms, gradient boosting, regression problem
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |