Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Алгоритм рекомендации изображений с использованием Ñ‚ÐµÑ Ð½Ð¾Ð»Ð¾Ð³Ð¸Ð¸ распознавания образов

выпускная квалификационная работа магистра

Алгоритм рекомендации изображений с использованием Ñ‚ÐµÑ Ð½Ð¾Ð»Ð¾Ð³Ð¸Ð¸ распознавания образов

Abstract

Выпускная квалификационная работа магистра связана с исследованием в области алгоритмов рекомендательных систем. Исследованы существующие решения в области рекомендации изображений и выявлены их недостатки: необходимость в ручном заполнении метаданных изображений пользователями, необходимость в значительных ресурсах и данных для обучения, отсутствие учета истории действий пользователя и построения его профиля. Предложенное в исследовании решение имеет следующие отличительные особенности, которые позволяют избежать недостатков существующих решений: распознавание классов на изображениях, представление пользователей и изображений в семантическом пространстве и преобразование семантического пространства в графовую структуру. Предложенное решение было реализовано в виде прототипа рекомендательной системой, взаимодействующей со внешней системой по HTTP-протоколу. Реализованный прототип был протестирован на предмет точности и полноты с помощью вычисления метрик precision и recall, а также на предмет времени выполнения. Алгоритм показал удовлетворительные результаты. Запланированы доработки алгоритма, связанные с увеличением полноты результатов выполнения, а также покрытие рекомендательной системы автоматизированными тестами.

The master graduate qualification work is related to research in the field of recommender system algorithms. Existing solutions in the field of image recommendation have the following disadvantages: necessity of manual filling of metadata by users, necessity of significant resources and data for model training, lack of the user action history consideration and lack of building his profile. In this study, a new algorithm is proposed for image recommendation, which allows us to avoid the disadvantages of existing solutions. The proposed solution has the following distinctive features that help avoid the disadvantages of existing solutions: class recognition in images, representation of users and images in the semantic space, and transformation of the semantic space into a graph structure. The proposed solution was implemented as a prototype of recommender system that interacts with external system over HTTP protocol. The implemented prototype was tested for accuracy and completeness by calculation of precision and recall metrics and was tested for execution time. The algorithm showed satisfactory results. It is planned to increase the completeness of execution results and to cover the recommendation system with automated tests.

Keywords

графовая база данныÑ, рекомендательные системы, семантическое пространство, word2vec, Графов теория, рекомендация изображений, распознавание образов

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!