Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Анализ и улучшение организации трафика с помощью Ð¸ÑÐºÑƒÑÑÑ‚Ð²ÐµÐ½Ð½Ñ‹Ñ Ð½ÐµÐ¹Ñ€Ð¾Ð½Ð½Ñ‹Ñ ÑÐµÑ‚ÐµÐ¹

выпускная квалификационная работа бакалавра

Анализ и улучшение организации трафика с помощью Ð¸ÑÐºÑƒÑÑÑ‚Ð²ÐµÐ½Ð½Ñ‹Ñ Ð½ÐµÐ¹Ñ€Ð¾Ð½Ð½Ñ‹Ñ ÑÐµÑ‚ÐµÐ¹

Abstract

Тема выпускной квалификационной работы: «Анализ и улучшение организации трафика с помощью искусственных нейронных сетей». В данной работе рассматривается вопрос создания системы умных светофоров, использующих технологию нейронных сетей для регулирования и оптимизирования дорожного трафика. Цель работы: разработка нейронной сети для управления светофорами. Результаты работы: работа была поделена на два больших этапа. На первом, «локальном», этапе была создана нейронная сеть для одного светофора, контролирующего только один перекресток. Нейронная сеть обучилась и результатом этапа стало снижение времени простоя на 37% по сравнению со стандартным светофором с фиксированным временем смены сигналов. Второй этап заключался в создании полноценной транспортной сети. На втором этапе работы умные светофоры (созданные на первом этапе) были объединены в единую сеть. Реализованная система показала общее улучшение состояния транспортной сети. При рассмотрении 6-и часового периода средняя задержка каждого транспортного средства была снижена на 26%, а средняя скорость выросла на 19%. Как итог, были достигнуты многообещающие результаты, показывающие высокую эффективность данного подхода к решению поставленной задачи. Область применения: управление потоками дорожного транспорта в условиях городской среды.

Theme of this final qualifying work is "Analysis and improvement of traffic organization using artificial neural networks." This paper considers the issue of creating a system of smart traffic lights that use neural network technology to regulate and optimize road traffic. The aim of the work: development of a neural network for controlling traffic lights. The results: the work was divided into two large phases. At the first, “local”, phase a neural network was created for one traffic light (that controls only one crossroad). The neural network was trained and the result of the first phase was a 37% reduction in downtime (at a crossroad) compared to a standard traffic light with a fixed signal change time. At the second phase of work, smart traffic lights (those were created at the first stage) were combined into a network. The implemented system showed an overall improvement in the state of the transport network. Considered a 6-hour period, the average delay of a vehicle was reduced by 26%, and the average speed increased by 19%. In conclusion, promising results were achieved, showing the high efficiency of this approach for solving the problem. Scope of application: management of streams of road transport in the conditions of the urban environment. 

Keywords

нейросети, road traffic management, reinforcement learning, обучение с подкреплением, светофоры, traffic lights, управление дорожным движением, neural networks

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!