Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Построение распределенной системы запасов в цепи поставок с использованием Big Data

выпускная квалификационная работа магистра

Построение распределенной системы запасов в цепи поставок с использованием Big Data

Abstract

Целью исследования является разработка практических рекомендаций по моделированию управления товарными запасами с применением больших данных. Задачи исследования: обозначение потенциала применимости больших данных в УЦП; разработка организационного управления товарными запасами ритейлера; расчет показателей эффективности внедрения технологии больших данных в ритейл-компанию. Исследование выполнялось на базе гипотетической ритейл-компании при использовании среднерыночных показателей затрат. Методы исследования: применялись общенаучные методы исследования: контентный и сравнительный анализ, моделирование бизнес-процессов, прогнозирование, экспертное оценивание, сбор и обработка данных, инфографика, методы оценки эффективности проектов. Основные результаты исследования: обоснована возможность использования представленной технологий в цепях поставок для управления запасами ритейл-компании; проведена оценка экономической целесообразности реализации проекта внедрения технологии больших данных в ритейл. Научной новизной исследования является конкретизация применения больших данных в области управления товарными запасами, а также способ оценки экономической эффективности от внедрения информационной технологии.

The study aims to develop practical recommendations for modelling inventory management using Big Data. Research Objectives: designation of the applicability potential of big data in SCM; development of organizational management of the retailer’s inventory; calculation of performance indicators for introducing big data technology into a retail company. The study was carried out based on a hypothetical retail company using average market cost indicators. Research methods: general scientific research methods were used: content and comparative analysis, modelling of business processes, forecasting, expert assessment, data collection and processing, infographics, methods for assessing project effectiveness. The main results of the paper: substantiated the possibility of using the presented technologies in supply chains to manage the inventory of a retail company; an assessment was made of the economic feasibility of the implementation of the project of introducing big data technology in retail. The scientific novelty of the study is the concretization of the use of big data in the field of inventory management, as well to assess the economic efficiency of the introduction of information technology.

Keywords

управление запасами, Искусственный интеллект, моделирование цепи поставок, спрос

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!