
Ð’ данной работе решаетÑÑ Ð·Ð°Ð´Ð°Ñ‡Ð° ÑÐ¾Ð·Ð´Ð°Ð½Ð¸Ñ Ð¸ÑкуÑÑтвенной нейронной Ñети Ð´Ð»Ñ Ð¾Ñ†ÐµÐ½ÐºÐ¸ точноÑти метода Монте-Карло на примере покерных раздач. Помимо вышеуказанного метода раÑÑмотрено ещё два оÑновных подхода Ð´Ð»Ñ Ð²Ñ‹Ñ‡Ð¸ÑÐ»ÐµÐ½Ð¸Ñ Ð´Ð¾Ð»Ð¸ общего количеÑтва покерных фишек в розыгрыше, которые доÑтаютÑÑ Ð¿Ð¾Ð±ÐµÐ´Ð¸Ñ‚ÐµÐ»ÑŽ раздачи. Также даны теоретичеÑкие ÑÐ²ÐµÐ´ÐµÐ½Ð¸Ñ Ð¾Ð± иÑкуÑÑтвенных нейронных ÑетÑÑ… и их практичеÑком применении поÑредÑтвом библиотек Ð´Ð»Ñ Ð¼Ð°ÑˆÐ¸Ð½Ð½Ð¾Ð³Ð¾ Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ Tensorflow и Keras на Ñзыке Ð¿Ñ€Ð¾Ð³Ñ€Ð°Ð¼Ð¼Ð¸Ñ€Ð¾Ð²Ð°Ð½Ð¸Ñ Python.
In this work, we solve the problem of creating an artificial neural network to assess the accuracy of the Monte Carlo method using poker hands as an example. In addition to the above method, two more basic approaches have been considered for calculating the share of the total number of poker chips in the drawing that go to the winner of the hand. Theoretical information is also given on artificial neural networks and their practical application through the Tensorflow and Keras machine learning libraries in the Python programming language.
python, tensorflow, keras, nerual network, меÑод монÑе-каÑло, monte-carlo method, нейÑÐ¾Ð½Ð½Ð°Ñ ÑеÑÑ
python, tensorflow, keras, nerual network, меÑод монÑе-каÑло, monte-carlo method, нейÑÐ¾Ð½Ð½Ð°Ñ ÑеÑÑ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
