Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Поиск пересечений линий на изображении

выпускная квалификационная работа бакалавра

Поиск пересечений линий на изображении

Abstract

Цель работы - реализовать алгоритм для поиска железнодорожных стрелок на изображениях, сделанных с локомотива поезда. В ходе работы были решены следующие проблемы: 1. Реализация двух алгоритмов для поиска ж/д стрелок: на основе преобразования Хафа для прямых, и алгоритм с обучением машины опорных векторов. 2. Создание датасета из 1357 размеченных ж/д стрелок. Данный датасет использовался для проверки качества работы обоих алгоритмов и обучения машины опорных векторов. 3. Сравнение результатов работы разработанных алгоритмов. Алгоритм на основе преобразования Хафа заключался в том, что изображение разбивалось на некоторое количество горизонтальных блоков, и в каждом блоке применялся алгоритм Хафа для поиска прямых. После чего пересечения найденных линий искались с учетом геометрических особенностей различных видов ж/д стрелок. В алгоритме с использованием машины опорных векторов был SVM-классификатор, входными векторами которого были гистограммы ориентированных градиентов окрестностей ж/д стрелок, размеченных в датасете. В результате алгоритм с использованием преобразования Хафа показал точность обнаружения=40% и процент найденных стрелок=70%, а алгоритм с построением SVM-классификатора показал точность=73% и процент найденных стрелок=78%. Таким образом, можно сделать вывод о том, что алгоритм с применением SVM-классификатора достаточно устойчив к шуму и показывает хорошие результаты для изображений, сделанных в различных погодных условиях, и работает лучше алгоритма на основе преобразования Хафа.

The purpose of this work is to develop two algorithms for detection railway switches on images taken from a train locomotive. During the work following problems were solved: 1. Developing of two algorithms for railway switches detection: algorithm based on Hough Transform and the algorithm based on support vector machine. 2. Creating dataset of 1357 labeled railway switches. This dataset was used for training SVM classifier and testing both algorithms. 3. Comparison of the results of both algorithms. In the algorithm based on Hough Transform first step was to divide an image to multiple horizontal blocks and detect lines in each block separately using Hough algorithm. After that intersections of detected lines were find using geometry features of different railboard switches types. Input vectors for SVM classifier were histograms of oriented gradients of railway switches marked in dataset. Several classifiers were trained for different switches types. As a result, the algorithm using the Hough transform showed the detection accuracy=40% and percentage of switches found=70%, and the algorithm with the construction of the SVM classifier showed the accuracy=73% and recall=78%. Thus, we can conclude that the algorithm using the SVM classifier is quite stable to noise and shows good results for images taken in various weather conditions. Also the SVM classifier shows better accuracy and recall than Hough based algorithm.

Keywords

преобразование Ñ Ð°Ñ„Ð°, машина Ð¾Ð¿Ð¾Ñ€Ð½Ñ‹Ñ Ð²ÐµÐºÑ‚Ð¾Ñ€Ð¾Ð², гистограмма Ð¾Ñ€Ð¸ÐµÐ½Ñ‚Ð¸Ñ€Ð¾Ð²Ð°Ð½Ð½Ñ‹Ñ Ð³Ñ€Ð°Ð´Ð¸ÐµÐ½Ñ‚Ð¾Ð², обнаружение Ð¶ÐµÐ»ÐµÐ·Ð½Ð¾Ð´Ð¾Ñ€Ð¾Ð¶Ð½Ñ‹Ñ ÑÑ‚Ñ€ÐµÐ»Ð¾Ðº, support vector machine, object detection, detection of railway arrows, hough transform, histogram of oriented gradients, поиск объектов на изображении

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!