Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Идентификация Ð¶Ð¸Ð²Ð¾Ñ‚Ð½Ñ‹Ñ Ð½Ð° Ñ„Ð¾Ñ‚Ð¾Ð³Ñ€Ð°Ñ„Ð¸ÑÑ Ð´Ð¸ÐºÐ¾Ð¹ природы

выпускная квалификационная работа бакалавра

Идентификация Ð¶Ð¸Ð²Ð¾Ñ‚Ð½Ñ‹Ñ Ð½Ð° Ñ„Ð¾Ñ‚Ð¾Ð³Ñ€Ð°Ñ„Ð¸ÑÑ Ð´Ð¸ÐºÐ¾Ð¹ природы

Abstract

Данная работа посвящена разработке алгоритма, позволяющего определять вид животного на сериях фотографий с камер-ловушек - камер, реагирующих на тепло или движение и расположенных в дикой природе. Задачи, которые решались в ходе исследования: 1. Исследование существующих методов решения задачи нахождения и классификации животных по фотографиям с камер-ловушек. 2. Построение алгоритма детектирования и классификации животных по сериям фотографий из дикой природы. 3. Сравнение результатов работы алгоритма на локациях, используемых в обучении, и новых локациях. Реализованный алгоритм состоит из двух основных частей: локализация местонахождения животного на фотографии и определение его вида. Нахождение области с животным основано на обнаружении изменений между двумя фотографиями из одной серии. Классификация животных осуществляется за счет выделения признаков с полученных на первом этапе алгоритма областей и применении машины опорных векторов в качестве классификатора. В работе представлены и проанализированы численные результаты применения полученного алгоритма на локациях, используемых в обучении, и новых локациях. Данные результаты используются учеными биологами для изучения влияния внешних факторов на сокращение популяций различных видов животных. На основании проведенных исследований было выявлено, что алгоритм хорошо работает на фотографиях, где животное трудно различить человеку, а также, что на некоторых новых локациях точность классификации падает незначительно.

The given work is devoted to the development of an algorithm that allows to determine the type of the animal on series of photographs from camera traps - heat- or motion-activated cameras placed in the wild. The research set the following goals: 1. The study of existing methods for solving the problem of finding and classifying animals from photographs from camera-traps. 2. Construction of an algorithm for detecting and classifying animals on a series of photos from the wild. 3. Comparison of the results of the algorithm on the locations used in training and new locations. The implemented algorithm consists of two main parts: localization animal's location on the photograph and determination its species. Finding area with animal based on detecting changes between two photographs from the same series. Classification of animals is carried out by selecting features from the regions obtained at the first stage of the algorithm and using the support vector machine as a classifier. The paper presents and analyzes the numerical results of applying the obtained algorithm to the locations used in training as well as to new locations. These results are used by biologists to study the influence of external factors on the reduction of populations of various animal species. Based on the studies, it was revealed that the algorithm works well on photographs where the animal is difficult to distinguish for a person, and also that the classification accuracy decreases slightly in some new locations.

Keywords

conservation biology, идентификация животныÑ, camera-traps images, гистограмма Ð¾Ñ€Ð¸ÐµÐ½Ñ‚Ð¸Ñ€Ð¾Ð²Ð°Ð½Ð½Ñ‹Ñ Ð³Ñ€Ð°Ð´Ð¸ÐµÐ½Ñ‚Ð¾Ð², animals identification, histogram of oriented gradients, object recognition, image processing, машина Ð¾Ð¿Ð¾Ñ€Ð½Ñ‹Ñ Ð²ÐµÐºÑ‚Ð¾Ñ€Ð¾Ð², фотографии с камер-ловушек, распознавание объектов, локальные бинарные шаблоны, защита биологического разнообразия, local binary patterns, классификация изображений, support vector machine, обработка изображений, image classification

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!