
Ð’ данной работе раÑÑматриваетÑÑ Ð¸Ñпользование алгоритмов компьютерного Ð·Ñ€ÐµÐ½Ð¸Ñ Ð¸ машинного Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ Ð´Ð»Ñ Ð¸Ñ… Ð¿Ñ€Ð¸Ð¼ÐµÐ½ÐµÐ½Ð¸Ñ Ð² беÑпилотных транÑпортных ÑредÑтвах, в чаÑтноÑти беÑпилотный автомобилÑÑ…. Более подробно, выделÑетÑÑ Ð²Ð½Ð¸Ð¼Ð°Ð½Ð¸Ðµ на задачу обработки изображении из видеопотока Ð´Ð»Ñ Ð¿Ð¾Ð»ÑƒÑ‡ÐµÐ½Ð¸Ñ Ð¸Ð½Ñ„Ð¾Ñ€Ð¼Ð°Ñ†Ð¸Ð¸ об окружаюшего проÑтранÑтва, ÑпоÑобÑÑ‚Ð²ÑƒÑ Ð²Ð¾Ð·Ð¼Ð¾Ð¶Ð½Ð¾Ñти дальнейшего принÑÑ‚Ð¸Ñ Ñ€ÐµÑˆÐµÐ½Ð¸Ñ Ð¾Ð± управлÑемых дейÑтвиÑÑ… автомобилÑ. Целью работы ÑвлÑетÑÑ Ñ€Ð°Ð·Ñ€Ð°Ð±Ð¾Ñ‚ÐºÐ° ÑиÑтемы Ð·Ñ€ÐµÐ½Ð¸Ñ Ð´Ð»Ñ Ð±ÐµÑпилотного автомобилÑ, позволÑÑŽÑ‰Ð°Ñ Ð²Ð¾ÑпринÑть окружающее проÑтранÑтво из видеопотока. Ð”Ð°Ð½Ð½Ð°Ñ ÑиÑтема на входе должна принимать кадры из видеопотока, при Ñтом предполагаетÑÑ Ñ‡Ñ‚Ð¾ камера находитÑÑ Ð² передней чаÑти Ð°Ð²Ñ‚Ð¾Ð¼Ð¾Ð±Ð¸Ð»Ñ Ð¸ направлена вперед, глÑÐ´Ñ Ð½Ð° проÑтранÑтво перед автомобилем. Ð’ качеÑтве выхода ÑиÑтема должна отдавать размеченные данные дороги. Дополнительно раÑÑмотрена задача поÑÑ‚Ñ€Ð¾ÐµÐ½Ð¸Ñ Ñ‚Ñ€Ð°ÐµÐºÑ‚Ð¾Ñ€Ð¸Ñ Ð´Ð²Ð¸Ð¶ÐµÐ½Ð¸Ñ Ð¿Ñ€Ð¸ анализе размеченных данных дороги. При Ð²Ñ‹Ð¿Ð¾Ð»Ð½ÐµÐ½Ð¸Ñ Ñтой работы были раÑÑмотрены различные ÑпоÑобы обработки изображениÑ, иÑÑ…Ð¾Ð´Ñ Ð¸Ð· алгоритмов компьютерного Ð·Ñ€ÐµÐ½Ð¸Ñ Ð¸ машинного обучениÑ. Проверка работы и оценка качеÑтво алгоритмов проводилоÑÑŒ на имеющихÑÑ Ð¸Ñходных видео файлов Ñ Ð²Ñ‹Ñoким разрешением Ñо Ñъемкой гоночной траÑÑÑ‹. Результирующие метки качеÑтвенно выделÑÑŽÑ‚ дорогу даже при плохих уÑловиÑÑ… и ÑвлÑÑŽÑ‚ÑÑ Ð´Ð¾Ñтаточными Ð´Ð»Ñ Ð¸ÑÐ¿Ð¾Ð»ÑŒÐ·Ð¾Ð²Ð°Ð½Ð¸Ñ Ð² дальнейших Ñтапах ÑиÑтем Ð·Ñ€ÐµÐ½Ð¸Ñ Ð² беÑпилотных автомобилÑÑ….
This paper discusses the use of computer vision and machine learning algorithms for their use in autonomous vehicles, in particular self-driving cars. In more detail, the work is focused on the task of processing images from a video stream to obtain information about the surrounding environment, contributing to the possibility of further decision-making for controlling actions of the vehicle. The aim of the work is to develop a vision system for an autonomous vehicle, which allows to perceive the surrounding environment from a video stream. This system should receive frames from a video stream as input, assuming that the camera is in front of the vehicle and is directed forward, looking at the space in front of the vehicle. As an output, the system should return labeled road data. In addition, the problem of constructing a movement trajectory from analysis of the labeled road data is considered. In carrying out this work, various methods of image processing were considered based on computer vision and machine learning algorithms. Verification of the work and evaluation of the quality of the algorithms was carried out on the available source video files with high resolution taken on a racing track. The resulting labels extract the road with high quality even under poor conditions and are sufficient for use in subsequent stages of vision systems in autonomous vehicles.
vision system, autonomous vehicle, ÑиÑÑема зÑениÑ, беÑпилоÑнÑй авÑомобилÑ, ÑеманÑиÑеÑÐºÐ°Ñ ÑегменÑаÑиÑ, semantic segmentation, полноÑвеÑÑоÑнÑе нейÑоннÑе ÑеÑи, fully convolutional neural networks
vision system, autonomous vehicle, ÑиÑÑема зÑениÑ, беÑпилоÑнÑй авÑомобилÑ, ÑеманÑиÑеÑÐºÐ°Ñ ÑегменÑаÑиÑ, semantic segmentation, полноÑвеÑÑоÑнÑе нейÑоннÑе ÑеÑи, fully convolutional neural networks
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
