<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ð’ данной работе приводитÑÑ Ð¼Ð°Ñ‚ÐµÐ¼Ð°Ñ‚Ð¸Ñ‡ÐµÑкое опиÑание четырёх наиболее раÑпроÑтранённых алгоритмов по раÑпознаванию нот в одноголоÑных мелодиÑÑ…, оÑущеÑтвлÑетÑÑ Ð¸Ñ… Ð¿Ñ€Ð¾Ð³Ñ€Ð°Ð¼Ð¼Ð½Ð°Ñ Ñ€ÐµÐ°Ð»Ð¸Ð·Ð°Ñ†Ð¸Ñ, производитÑÑ Ð°Ð½Ð°Ð»Ð¸Ð· их точноÑти и ÑффективноÑти на раÑпознавании аудиозапиÑей, в которых помимо мелодии ÑодержатÑÑ â€œÑˆÑƒÐ¼Ð¾Ð²Ñ‹Ðµâ€ Ð¾Ñ‚Ð·Ð²ÑƒÐºÐ¸ и обертоны, а также ÑпецифичеÑкие приёмы игры, характерные Ð´Ð»Ñ Ð¾Ð¿Ñ€ÐµÐ´ÐµÐ»Ñ‘Ð½Ð½Ñ‹Ñ… музыкальных инÑтрументов. Ð’ процеÑÑе интерпретации результатов раÑÐ¿Ð¾Ð·Ð½Ð°Ð²Ð°Ð½Ð¸Ñ Ð²Ñ‹ÑвлÑÑŽÑ‚ÑÑ Ð½ÐµÑовершенÑтва алгоритмов при работе Ñ Ñ‚Ð°ÐºÐ¸Ð¼Ð¸ аудиозапиÑÑми. Данные неÑовершенÑтва объÑÑнÑÑŽÑ‚ÑÑ Ñ Ñ‚Ð¾Ñ‡ÐºÐ¸ Ð·Ñ€ÐµÐ½Ð¸Ñ Ñпецифики алгоритмов и методов цифровой обработки Ñигналов, иÑпользованных в их оÑнове. Ð’ завершение анализа алгоритмов по раÑпознаванию одноголоÑных мелодий приводитÑÑ Ð¸Ñ… ÑÑ€Ð°Ð²Ð½Ð¸Ñ‚ÐµÐ»ÑŒÐ½Ð°Ñ Ñ…Ð°Ñ€Ð°ÐºÑ‚ÐµÑ€Ð¸Ñтика по вÑем раÑÑмотренным аÑпектам в ÑоответÑтвии Ñ Ð¸Ñпользованными Ð´Ð»Ñ Ñ€Ð°Ð±Ð¾Ñ‚Ñ‹ аудиозапиÑÑми. Далее в работе разрабатываетÑÑ Ð½ÐµÐ¹Ñ€Ð¾Ð°Ð»Ð³Ð¾Ñ€Ð¸Ñ‚Ð¼ Ð´Ð»Ñ Ñмежной задачи: раÑÐ¿Ð¾Ð·Ð½Ð°Ð²Ð°Ð½Ð¸Ñ Ð°ÐºÐºÐ¾Ñ€Ð´Ð¾Ð² в музыкальных фрагментах. ПоÑле опиÑÐ°Ð½Ð¸Ñ Ñ€ÐµÐ°Ð»Ð¸Ð·Ð°Ñ†Ð¸Ð¸ приводитÑÑ Ð¾Ñ†ÐµÐ½ÐºÐ° качеÑтва и универÑальноÑти работы алгоритма.
This paper gives mathematical descriptions of four mostly widespread single-pitch estimation algorithms, and then describes their software implementation. After that, the accuracy and effectiveness of these algorithms are measured based on the results captured after processing audio-recordings with different «noisy» sounds, overtones, echo effects, timbre features and music techniques of various musical instruments. Obviously, all these aspects affect the estimation accuracy. The goal of the part dedicated to single pitch estimation algorithms is to analyze the accuracy loss and relate the loss with the steps implemented in the algorithms. The end of this part of work provides the comparative characteristics based on the aspects chosen in accordance with the features of audio-recordings being processed. The remainder of the work is dedicated to the implementation of the neuro-algorithm for the related purpose: multi-pitch estimation. The implementation description is followed by the quality and operational universality evaluation of the model.
ÑÑавниÑелÑнÑй анализ, python, keras, ÑиÑÑÐ¾Ð²Ð°Ñ Ð¾Ð±ÑабоÑка Ñигналов, comparative analysis, neural network, оÑенка каÑеÑÑва, digital signal processing, ÑаÑпознавание ÑаÑÑоÑÑ Ð·Ð²Ñка, pitch estimation, нейÑÐ¾Ð½Ð½Ð°Ñ ÑеÑÑ, quality evaluation
ÑÑавниÑелÑнÑй анализ, python, keras, ÑиÑÑÐ¾Ð²Ð°Ñ Ð¾Ð±ÑабоÑка Ñигналов, comparative analysis, neural network, оÑенка каÑеÑÑва, digital signal processing, ÑаÑпознавание ÑаÑÑоÑÑ Ð·Ð²Ñка, pitch estimation, нейÑÐ¾Ð½Ð½Ð°Ñ ÑеÑÑ, quality evaluation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |