Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Алгоритмы автоматического определения вида модуляции сигналов в ÑÐ¸ÑÑ‚ÐµÐ¼Ð°Ñ Ñ€Ð°Ð´Ð¸Ð¾Ð¼Ð¾Ð½Ð¸Ñ‚Ð¾Ñ€Ð¸Ð½Ð³Ð°

выпускная квалификационная работа магистра

Алгоритмы автоматического определения вида модуляции сигналов в ÑÐ¸ÑÑ‚ÐµÐ¼Ð°Ñ Ñ€Ð°Ð´Ð¸Ð¾Ð¼Ð¾Ð½Ð¸Ñ‚Ð¾Ñ€Ð¸Ð½Ð³Ð°

Abstract

Проведен обзор имеющихся алгоритмов автоматического распознавания аналоговых модуляций, подробный обзор параметрических алгоритмов. Получены зависимости значений параметров сигналов, необходимых для работы исследуемых алгоритмов, в некотором диапазоне отношений сигнал/шум, а также пороговые значения для алгоритма дерева решений. Проведено сравнение эффективности метода на основе дерева решений и методов машинного обучения — искусственные нейронные сети прямого распространения и метод k-ближайших соседей. Получены вероятности верного и ошибочного решения для указанных алгоритмов. На современной программируемой элементной базе представлена реализация наиболее эффективного автоматического алгоритма распознавания модуляции по критериям минимума вероятности ошибочного решения и вычислительных ресурсов.

A review of the available algorithms for automatic recognition of analog modulations, a detailed review of parametric algorithms. The dependences of the values of the parameters of the signals necessary for the work of the investigated algorithms, in a certain range of signal-to-noise ratio, as well as the threshold values for the decision tree algorithm are obtained. A comparison was made of the effectiveness of the method based on a decision tree and machine learning methods — feed-forward artificial neural networks and the method of k-nearest neighbors. The probabilities of the correct and erroneous solution for the specified algorithms are obtained. On the modern programmable element base, the implementation of the most effective automatic modulation recognition algorithm is presented according to the criteria of minimum probability of an erroneous solution and computational resources.

Keywords

классификация модуляций, дерево решений, machine learning, automatic modulation recognition algorithms, метод k-Ð±Ð»Ð¸Ð¶Ð°Ð¹ÑˆÐ¸Ñ ÑÐ¾ÑÐµÐ´ÐµÐ¹, decision tree, машинное обучение, искусственные нейронные сети, алгоритмы автоматического распознавания модуляций, modulation classification, k-nearest neighbors method, artificial neural networks

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!