
Ð’ данной выпуÑкной квалификационной работе иÑÑледуетÑÑ Ð²Ð¾Ð·Ð¼Ð¾Ð¶Ð½Ð¾Ñть Ð¿Ñ€Ð¸Ð¼ÐµÐ½ÐµÐ½Ð¸Ñ Ð°Ð»Ð³Ð¾Ñ€Ð¸Ñ‚Ð¼Ð¾Ð² интеллектуального анализа данных Ð´Ð»Ñ Ð¼Ð¾Ð½Ð¸Ñ‚Ð¾Ñ€Ð¸Ð½Ð³Ð° информационной ÑиÑтемы на предмет вероÑтного поÑÐ²Ð»ÐµÐ½Ð¸Ñ Ñбоев и ошибок. Проведён анализ ÑущеÑтвующих решений алгоритмов машинного Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ Ð¸ ÑтатиÑтики Ð´Ð»Ñ Ð¿Ñ€Ð¾Ð±Ð»ÐµÐ¼ подобного рода. РаÑÑмотрены и применены алгоритмы машинного Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ Ð¸ методы Ð¾Ð¿Ñ€ÐµÐ´ÐµÐ»ÐµÐ½Ð¸Ñ Ð¾Ð¿Ñ‚Ð¸Ð¼Ð°Ð»ÑŒÐ½Ð¾Ð¹ модели Ð´Ð»Ñ Ñ€ÐµÑˆÐµÐ½Ð¸Ñ ÐºÐ¾Ð½ÐºÑ€ÐµÑ‚Ð½Ð¾Ð¹ задачи на данных определенной Ñтруктуры. Выбрана модель, обеÑÐ¿ÐµÑ‡Ð¸Ð²Ð°ÑŽÑ‰Ð°Ñ Ð½Ð°Ð¸Ð±Ð¾Ð»ÑŒÑˆÑƒÑŽ точноÑть предÑказаний, и проведена оптимизациÑ, позволÑÑŽÑ‰Ð°Ñ Ñократить затраты временных и вычиÑлительных реÑурÑов.
In this paper, the possibility of using data mining algorithms to monitor an information system for the occurrence of probable failures and errors is explored. The analysis of existing solutions of machine learning algorithms and statistics for problems of this kind was carried out. Algorithms of machine learning and methods for determining the optimal model for solving a specific problem on the data of a certain structure are considered and applied. The model that provides the most accurate predictions was chosen, and optimization was carried out to reduce the time and computational resources.
machine learning, инÑеллекÑÑалÑнÑй анализ даннÑÑ, маÑинное обÑÑение, data mining, бизнеÑ-пÑиложениÑ, business applications
machine learning, инÑеллекÑÑалÑнÑй анализ даннÑÑ, маÑинное обÑÑение, data mining, бизнеÑ-пÑиложениÑ, business applications
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
