Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Использование алгоритмов машинного обучения для обнаружения Ð¿Ñ€Ð¾Ð±Ð»ÐµÐ¼Ð½Ñ‹Ñ Ð·Ð°ÑÐ²Ð¾Ðº в бизнес-приложении

выпускная квалификационная работа бакалавра

Использование алгоритмов машинного обучения для обнаружения Ð¿Ñ€Ð¾Ð±Ð»ÐµÐ¼Ð½Ñ‹Ñ Ð·Ð°ÑÐ²Ð¾Ðº в бизнес-приложении

Abstract

В данной выпускной квалификационной работе исследуется возможность применения алгоритмов интеллектуального анализа данных для мониторинга информационной системы на предмет вероятного появления сбоев и ошибок. Проведён анализ существующих решений алгоритмов машинного обучения и статистики для проблем подобного рода. Рассмотрены и применены алгоритмы машинного обучения и методы определения оптимальной модели для решения конкретной задачи на данных определенной структуры. Выбрана модель, обеспечивающая наибольшую точность предсказаний, и проведена оптимизация, позволяющая сократить затраты временных и вычислительных ресурсов.

In this paper, the possibility of using data mining algorithms to monitor an information system for the occurrence of probable failures and errors is explored. The analysis of existing solutions of machine learning algorithms and statistics for problems of this kind was carried out. Algorithms of machine learning and methods for determining the optimal model for solving a specific problem on the data of a certain structure are considered and applied. The model that provides the most accurate predictions was chosen, and optimization was carried out to reduce the time and computational resources.

Keywords

machine learning, интеллектуальный анализ данныÑ, машинное обучение, data mining, бизнес-приложения, business applications

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!