<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
ÐаÑтоÑÑ‰Ð°Ñ Ñ€Ð°Ð±Ð¾Ñ‚Ð° поÑвÑщена методам интеллектуального анализа Ð´Ð°Ð½Ð½Ñ‹Ñ ÑредÑтвами Ñзыка R и СУБД SQL Server. Работа ÑоÑтоит из введениÑ, Ñ‚Ñ€ÐµÑ Ñ€Ð°Ð·Ð´ÐµÐ»Ð¾Ð², заключениÑ. Во введении отражена актуальноÑть задачи и опиÑаны оÑновные Ñ‚Ñ€ÐµÐ±Ð¾Ð²Ð°Ð½Ð¸Ñ Ðº работе. Ð’ первой главе проведен обзор аналитичеÑÐºÐ¸Ñ Ð·Ð°Ð´Ð°Ñ‡ в Ñ€Ð°Ð·Ð»Ð¸Ñ‡Ð½Ñ‹Ñ Ð¿Ð¾ÑÑ‚Ð°Ð½Ð¾Ð²ÐºÐ°Ñ Ð¸ методов Ð¸Ñ Ñ€ÐµÑˆÐµÐ½Ð¸Ñ. Были раÑÑмотрены Ñледующие задачи: поиÑк аÑÑоциаций, клаÑÑификациÑ, клаÑтеризациÑ, анализ Ð²Ñ€ÐµÐ¼ÐµÐ½Ð½Ñ‹Ñ Ñ€Ñдов, Ð²Ð¸Ð·ÑƒÐ°Ð»Ð¸Ð·Ð°Ñ†Ð¸Ñ Ñ€ÐµÐ·ÑƒÐ»ÑŒÑ‚Ð°Ñ‚Ð¾Ð². Во второй главе проводилаÑÑŒ работа Ñ Ñ€ÐµÐ»Ñционной базой Ð´Ð°Ð½Ð½Ñ‹Ñ ÑредÑтвами R и MS SQL Server. Ð’ третьей главе была проделана работа Ñ Ð¿Ð»Ð¾Ñ Ð¾ Ñтруктурированными данными, а именно, проведен анализ тональноÑти выÑказываний в Ñоциальной Ñети. Заключение включает оÑновные выводы по работе.
The aim of this thesis is to investigate data analysis and data mining methods presented in MS SQL Server and R. This thesis first examines various mining methods used in data analysis in different situations. The following problem types were considered: clustering, association rules, classification, time series and visualization. In a second stage the work with relational database was performed. The relevant methods were applied to the specific problem in order to build mining models with MS SQL Server and R for clustering, classification and prediction purposes. Finally, the specific R tools for the analysis of poorly structured data were used and the Twitter posts sentiment analysis was performed.
ÐÑогÑаммиÑÐ¾Ð²Ð°Ð½Ð¸Ñ ÑзÑки, ÐÐ°Ð·Ñ Ð´Ð°Ð½Ð½ÑÑ, ÐейÑоннÑе ÑеÑи, инÑеллекÑÑалÑнÑй анализ даннÑÑ, data mining, клаÑÑеÑизаÑиÑ, clustering
ÐÑогÑаммиÑÐ¾Ð²Ð°Ð½Ð¸Ñ ÑзÑки, ÐÐ°Ð·Ñ Ð´Ð°Ð½Ð½ÑÑ, ÐейÑоннÑе ÑеÑи, инÑеллекÑÑалÑнÑй анализ даннÑÑ, data mining, клаÑÑеÑизаÑиÑ, clustering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |