
doi: 10.18720/mce.86.10
Development of technology facilitates construction of tall buildings. One of the common kinds of them is Tubular systems, divided into different types: framed tube, tube-in-tube, trussed tube and bundled tube systems. The main problem of tubular systems is the shear lag phenomenon that decreases the bending rigidity and moment resistance of the structures. In this paper, the phenomenon of shear lag in all kinds of steel tube systems is investigated analytically. In order to reach this objective, sixteen steel multi-storey tubular structures with the same plan, but a with a different number of stories and different tubular systems were designed by ETABS software based on AISC. Then the shear lags of each structure in different elevations are calculated by using the linear response spectrum analysis. The results show that nearly in the upper half of the structures the negative shear lag happens. Besides all, the formula was derived for each system with regard to the analyses data with linear regression examine by SPSS software, which showed that there is a significant relation between shear lag and three independent variables: story number, height ratio and distance from the web of the structures.
Development of technology facilitates construction of tall buildings. One of the common kinds of them is Tubular systems, divided into different types: framed tube, tube-in-tube, trussed tube and bundled tube systems. The main problem of tubular systems is the shear lag phenomenon that decreases the bending rigidity and moment resistance of the structures. In this paper, the phenomenon of shear lag in all kinds of steel tube systems is investigated analytically. In order to reach this objective, sixteen steel multi-storey tubular structures with the same plan, but a with a different number of stories and different tubular systems were designed by ETABS software based on AISC. Then the shear lags of each structure in different elevations are calculated by using the linear response spectrum analysis. The results show that nearly in the upper half of the structures the negative shear lag happens. Besides all, the formula was derived for each system with regard to the analyses data with linear regression examine by SPSS software, which showed that there is a significant relation between shear lag and three independent variables: story number, height ratio and distance from the web of the structures.
tube-in-tube system, система "труба в трубе", Building construction, сдвиговое запаздывание, стержневая система, Engineering (General). Civil engineering (General), оболочково-диафрагмовая система, bundled tube system, каркасно-оболочковая система, shear lag, framed tube system, TA1-2040, TH1-9745, trussed tube system
tube-in-tube system, система "труба в трубе", Building construction, сдвиговое запаздывание, стержневая система, Engineering (General). Civil engineering (General), оболочково-диафрагмовая система, bundled tube system, каркасно-оболочковая система, shear lag, framed tube system, TA1-2040, TH1-9745, trussed tube system
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
