
Beam search is universally used in full-sentence translation but its application to simultaneous translation remains non-trivial, where output words are committed on the fly. In particular, the recently proposed wait-k policy (Ma et al., 2019a) is a simple and effective method that (after an initial wait) commits one output word on receiving each input word, making beam search seemingly impossible. To address this challenge, we propose a speculative beam search algorithm that hallucinates several steps into the future in order to reach a more accurate decision, implicitly benefiting from a target language model. This makes beam search applicable for the first time to the generation of a single word in each step. Experiments over diverse language pairs show large improvements over previous work.
accepted by EMNLP 2019
FOS: Computer and information sciences, Computer Science - Computation and Language, Computation and Language (cs.CL)
FOS: Computer and information sciences, Computer Science - Computation and Language, Computation and Language (cs.CL)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
