<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We introduce novel dynamic oracles for training two of the most accurate known shift-reduce algorithms for constituent parsing: the top-down and in-order transition-based parsers. In both cases, the dynamic oracles manage to notably increase their accuracy, in comparison to that obtained by performing classic static training. In addition, by improving the performance of the state-of-the-art in-order shift-reduce parser, we achieve the best accuracy to date (92.0 F1) obtained by a fully-supervised single-model greedy shift-reduce constituent parser on the WSJ benchmark.
Proceedings of EMNLP 2018. 11 pages
FOS: Computer and information sciences, Computer Science - Computation and Language, I.2.7, 68T50, Computation and Language (cs.CL)
FOS: Computer and information sciences, Computer Science - Computation and Language, I.2.7, 68T50, Computation and Language (cs.CL)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |