Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institutional Knowle...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://aclanthology.org/2021....
Article
License: CC BY
Data sources: UnpayWall
https://doi.org/10.18653/v1/20...
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Towards Generative Aspect-Based Sentiment Analysis

Authors: ZHANG, Wenxuan; LI, Xin; DENG, Yang; BING, Lidong; LAM, Wai;

Towards Generative Aspect-Based Sentiment Analysis

Abstract

Aspect-based sentiment analysis (ABSA) has received increasing attention recently. Most existing work tackles ABSA in a discriminative manner, designing various task-specific classification networks for the prediction. Despite their effectiveness, these methods ignore the rich label semantics in ABSA problems and require extensive task-specific designs. In this paper, we propose to tackle various ABSA tasks in a unified generative framework. Two types of paradigms, namely annotation-style and extraction-style modeling, are designed to enable the training process by formulating each ABSA task as a text generation problem. We conduct experiments on four ABSA tasks across multiple benchmark datasets where our proposed generative approach achieves new state-of-the-art results in almost all cases. This also validates the strong generality of the proposed framework which can be easily adapted to arbitrary ABSA task without additional task-specific model design.

Related Organizations
Keywords

Task-specific models, Databases and Information Systems, Information Security, Training process, State of the art, Sentiment analysis, Classification networks, Label semantics, Graphics and Human Computer Interfaces, Benchmark datasets, Text generations, Analysis problems

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 1%
Top 10%
Top 1%
Green
hybrid