
In this paper, we present SemEval-2020 Task 4, Commonsense Validation and Explanation (ComVE), which includes three subtasks, aiming to evaluate whether a system can distinguish a natural language statement that makes sense to humans from one that does not, and provide the reasons. Specifically, in our first subtask, the participating systems are required to choose from two natural language statements of similar wording the one that makes sense and the one does not. The second subtask additionally asks a system to select the key reason from three options why a given statement does not make sense. In the third subtask, a participating system needs to generate the reason. We finally attracted 39 teams participating at least one of the three subtasks. For Subtask A and Subtask B, the performances of top-ranked systems are close to that of humans. However, for Subtask C, there is still a relatively large gap between systems and human performance. The dataset used in our task can be found at https://github.com/wangcunxiang/SemEval2020- Task4-Commonsense-Validation-and-Explanation; The leaderboard can be found at https://competitions.codalab.org/competitions/21080#results.
Task description paper of SemEval-2020 Task 4: Commonsense Validation and Explanation
FOS: Computer and information sciences, Computer Science - Computation and Language, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computation and Language (cs.CL)
FOS: Computer and information sciences, Computer Science - Computation and Language, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computation and Language (cs.CL)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 53 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
