Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncotargetarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncotarget
Article . 2016 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncotarget
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncotarget
Article . 2017
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2016
License: CC BY
Data sources: PubMed Central
versions View all 3 versions
addClaim

Mitochondrial transplantation attenuates hypoxic pulmonary vasoconstriction

Authors: Zhou, Juan; Zhang, Jiwei; Lu, Yankai; Huang, Songling; Xiao, Rui; Zeng, Xianqin; Zhang, Xiuyun; +5 Authors

Mitochondrial transplantation attenuates hypoxic pulmonary vasoconstriction

Abstract

Hypoxia triggers pulmonary vasoconstriction, however induces relaxation of systemic arteries such as femoral arteries. Mitochondria are functionally and structurally heterogeneous between different cell types. The aim of this study was to reveal whether mitochondrial heterogeneity controls the distinct responses of pulmonary versus systemic artery smooth muscle cells to hypoxia. Intact mitochondria were transplanted into Sprague-Dawley rat pulmonary artery smooth muscle cells in culture and pulmonary arteries in vitro. Mitochondria retained functional after transplantation. The cross transplantation of mitochondria between pulmonary and femoral artery smooth muscle cells reversed acute hypoxia-induced alterations in cell membrane potential, [Ca2+]i signaling in smooth muscle cells and constriction or relaxation of arteries. Furthermore, the high or low amount of reactive oxygen species generation from mitochondria and their divergent (dis-)abilities in activating extracellular Ca2+-sensing receptor in smooth muscle cells were found to cause cell membrane potential depolarization, [Ca2+]i elevation and constriction of pulmonary arteries versus cell membrane potential hyperpolarization, [Ca2+]i decline and relaxation of femoral arteries in response to hypoxia, respectively. Our findings suggest that mitochondria necessarily determine the behaviors of vascular smooth muscle cells in response to hypoxia.

Related Organizations
Keywords

Myocytes, Smooth Muscle, Pulmonary Artery, Cell Hypoxia, Membrane Potentials, Mitochondria, Femoral Artery, Rats, Sprague-Dawley, Microscopy, Electron, Vasoconstriction, Animals, Calcium, Hypoxia, Reactive Oxygen Species, Cells, Cultured, Research Paper

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
Green
gold