Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncotargetarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncotarget
Article . 2015 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncotarget
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncotarget
Article . 2016
versions View all 2 versions
addClaim

Stage-specific prognostic biomarkers in melanoma

Authors: Yabin, Cheng; Jing, Lu; Guangdi, Chen; Gholamreza Safaee, Ardekani; Anand, Rotte; Magdalena, Martinka; Xuezhu, Xu; +3 Authors

Stage-specific prognostic biomarkers in melanoma

Abstract

The melanoma staging system proposed by the American Joint Committee on Cancer (AJCC) (which classifies melanoma patients into four clinical stages) is currently the most widely used tool for melanoma prognostication, and clinical management decision making by clinicians. However, multiple studies have shown that melanomas within specific AJCC Stages can exhibit varying progression and clinical outcomes. Thus, additional information, such as that provided by biomarkers is needed to assist in identifying the patients at risk of disease progression. Having previously found six independent prognostic biomarkers in melanoma, including BRAF, MMP2, p27, Dicer, Fbw7 and Tip60, our group has gone on to investigate if these markers are useful in risk stratification of melanoma patients in individual AJCC stages. First, we performed Kaplan-Meier survival and Cox proportional multivariate analyses comparing prognostication power of these markers in 254 melanoma patients for whom the expression levels were known, identifying the best performing markers as candidates for stage-specific melanoma markers. We then verified the results by incorporating an additional independent cohort (87 patients) and in a combined cohort (341 patients). Our data indicate that BRAF and MMP2 are optimal prognostic biomarkers for AJCC Stages I and II, respectively (P = 0.010, 0.000, Log-rank test); whereas p27 emerged as a good marker for AJCC Stages III/IV (0.018, 0.046, respectively, log-rank test). Thus, our study has identified stage-specific biomarkers in melanoma, a finding which may assist clinicians in designing improved personalized therapeutic modalities.

Related Organizations
Keywords

Adult, Aged, 80 and over, Male, Proto-Oncogene Proteins B-raf, Skin Neoplasms, Adolescent, Middle Aged, Prognosis, Young Adult, Biomarkers, Tumor, Disease Progression, Humans, Matrix Metalloproteinase 2, Female, Child, Melanoma, Cyclin-Dependent Kinase Inhibitor p27, Aged, Neoplasm Staging

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%
gold