
Glioblastomas (GBMs) are the most frequent and the most aggressive brain tumors, known for their chemo- and radio-resistance, making them often incurable. We also know that SETMAR is a protein involved in chromatin dynamics and genome plasticity, of which overexpression confers chemo- and radio-resistance to some tumors. The relationships between SETMAR and GBM have never been explored. To fill this gap, we define the SETMAR status of 44 resected tumors and of GBM derived cells, at both the mRNA and the protein levels. We identify a new, small SETMAR protein (so called SETMAR-1200), enriched in GBMs and GBM stem cells as compared to the regular enzyme (SETMAR-2100). We show that SETMAR-1200 is able to increase DNA repair by non-homologous end-joining, albeit with a lower efficiency than the regular SETMAR protein. Interestingly, the regular/small ratio of SETMAR in GBM cells changes depending on cell type, providing evidence that SETMAR expression is regulated by alternative splicing. We also demonstrate that SETMAR expression can be regulated by the use of an alternative ATG. In conclusion, various SETMAR proteins can be synthesized in human GBM that may each have specific biophysical and/or biochemical properties and characteristics. Among them, the small SETMAR may play a role in GBMs biogenesis. On this basis, we would like to consider SETMAR-1200 as a new potential therapeutic target to investigate, in addition to the regular SETMAR protein already considered by others.
Time Factors, Brain Neoplasms, CHO Cells, Histone-Lysine N-Methyltransferase, Transfection, Gene Expression Regulation, Enzymologic, Gene Expression Regulation, Neoplastic, Alternative Splicing, Cricetulus, Cell Line, Tumor, Enzyme Stability, Neoplastic Stem Cells, Animals, Humans, Protein Isoforms, RNA, Messenger, Glioblastoma, Research Paper
Time Factors, Brain Neoplasms, CHO Cells, Histone-Lysine N-Methyltransferase, Transfection, Gene Expression Regulation, Enzymologic, Gene Expression Regulation, Neoplastic, Alternative Splicing, Cricetulus, Cell Line, Tumor, Enzyme Stability, Neoplastic Stem Cells, Animals, Humans, Protein Isoforms, RNA, Messenger, Glioblastoma, Research Paper
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
