Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Agingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aging
Article . 2022 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aging
Article . 2022
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

Effective natural inhibitors targeting IGF-1R by computational study

Authors: Wang, Xinyu; Zhou, Pengcheng; Lin, Liangxin; Wu, Bo; Fu, Zhaoyu; Huang, Xing; Zhu, Dong;

Effective natural inhibitors targeting IGF-1R by computational study

Abstract

IGF-1R belongs to a tyrosine kinase family and is currently a newly discovered drug target. IGF-1R inhibitors can bind directly to IGF-1R to achieve the effect of inhibiting the function of IGF-1R. At present, IGF-1R inhibitors have good clinical effects on Ewing sarcoma in the clinic. In this article, we screened compounds capable of inhibiting IGF-1R function through computer-aided virtual technology. First, some molecules with good docking properties for IGF-1R can be screened by LibDock. Then, ADME analysis (adsorption, distribution, metabolism, and excretion) and toxicity indicators were performed. The mechanism of binding and the binding affinity in the middle of IGF-1R and ligand were verified using molecular docking. Ultimately, the stability of ligand-receptor complex was evaluated using molecular dynamics simulations. In line with the results, two natural compounds ZINC000014946303 and ZINC000006003042 were found in the ZINC database, potential effective inhibitors of IGF-1R. ZINC000014946303 and ZINC000006003042 can bind to IGF-1R with high binding affinity as predicted by molecular docking. It was also found that they are not hepatotoxic, with less developmental toxicity potential, rodent carcinogenicity, Ames mutagenicity, and high tolerance to cytochrome P4502D6. Hereby, this study aimed to screen out ideal compounds that have inhibitory effects on IGF-1R from the drug library and, at the same time, provide a direction for the future development of IGF-1R inhibitors.

Related Organizations
Keywords

Molecular Docking Simulation, Drug Delivery Systems, Humans, Sarcoma, Ewing, Ligands, Research Paper

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
gold