Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Agingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aging
Article . 2021 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aging
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aging
Article . 2021
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

Characterization of immune infiltration in sarcomatoid hepatocellular carcinoma

Authors: Luo, Chubin; Xin, Haoyang; Yin, Dan; Zhao, Tongyi; Hu, Zhiqiang; Zhou, Zhengjun; Sun, Rongqi; +6 Authors

Characterization of immune infiltration in sarcomatoid hepatocellular carcinoma

Abstract

Sarcomatoid hepatocellular carcinoma (sHCC) is a rare type of liver malignancy. Currently, the tumor immune features of sHCC are poorly understood. We recruited 31 patients with resected sHCC for whom tissue samples and complete clinicopathologic and follow-up data were available. To understand the immune infiltration of sHCC, immunohistochemical staining was performed on the resected sHCC samples to compare the expressions of programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), B7-H3, indoleamine 2,3-dioxygenase (IDO), lymphocyte-activation gene 3 (LAG-3), CD8, FOXP3, and CD68 in tumor and peritumoral tissues. Kaplan-Meier and Cox regression analyses were used to assess the predictive value of immune markers. Sarcomatoid components were characterized with significantly higher expression of PD-L1 and B7-H3 in tumor cells than in conventional HCC components, as well as in peritumoral tissue. Additionally, sarcomatoid components had a higher density of FOXP3+ and LAG-3+ cells and a lower density of CD8+ cells than conventional HCC components or peritumoral tissue. Higher expression of PD-L1 in tumor cells significantly correlated with higher densities of CD8+, PD-1+, and LAG-3+ cells. Increased tumor PD-L1 expression and decreased CD8+ T-cell density were associated with poor overall survival (OS) and disease-free survival (DFS) in patients of sHCC. These findings suggest further characterization on relative mechanism of sHCC immune infiltration may identify therapeutic targets for immunotherapy.

Related Organizations
Keywords

Carcinoma, Hepatocellular, Liver Neoplasms, Cell Count, Sarcoma, Kaplan-Meier Estimate, Immune Checkpoint Proteins, Prognosis, Disease-Free Survival, Neoplasm Proteins, Lymphocytes, Tumor-Infiltrating, Multivariate Analysis, Biomarkers, Tumor, Humans, Neoplasm Recurrence, Local, Research Paper

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Green
gold