
pmid: 33332780
Background: MicroRNAs play a crucial role in diabetic peripheral neuropathic pain (DPNP). miR-590-3p is a novel miRNA and involved in multiple diseases. However, the pathological mechanism of miR-590-3p in DPNP needs to be elucidated. Materials and methods: The db/db mice and db/m mice were selected to mimic diabetes and control, respectively, for in vivo studies. The miR-590-3p agomir was injected into db/db mice and pain-related behavioral tests were performed. The interaction of miR-590-3p with target gene was confirmed by dual-luciferase reporter assay. The expression of target gene was determined by qRT-PCR and western blot assay. The levels of inflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA). Results: miR-590-3p was down-regulated in diabetic peripheral neuropathy mice. More importantly, miR-590-3p agomir alleviated pain-related behavior, reduced TNF-α, IL-1β and IL-6 concentrations, and inhibited neural infiltration by immune cells in db/db mice. Interestingly, RAP1A was predicted to be the target of miR-590-3p by Targetscan, and was actually regulated by miR-590-3p. Finally, the rescue experiments proved that overexpression of RAP1A partially abrogated the suppressive impact of miR-590-3p on T cells proliferation and migration. Conclusion: miR-590-3p ameliorates DPNP via targeting RAP1A and inhibiting T cells infiltration, indicating that exogenous miR-590-3p may be a potential candidate for clinical treatment of DPNP.
Male, Oligoribonucleotides, Base Sequence, Interleukin-6, Interleukin-1beta, Antagomirs, Disease Models, Animal, Mice, MicroRNAs, Diabetes Mellitus, Type 2, Diabetic Neuropathies, Gene Expression Regulation, Cell Movement, Genes, Reporter, Ganglia, Spinal, Animals, Neuralgia, Luciferases, Base Pairing, Cell Proliferation
Male, Oligoribonucleotides, Base Sequence, Interleukin-6, Interleukin-1beta, Antagomirs, Disease Models, Animal, Mice, MicroRNAs, Diabetes Mellitus, Type 2, Diabetic Neuropathies, Gene Expression Regulation, Cell Movement, Genes, Reporter, Ganglia, Spinal, Animals, Neuralgia, Luciferases, Base Pairing, Cell Proliferation
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
