
The unicellular eukaryote S. cerevisiae represents an invaluable resource for the study of basic eukaryotic cellular and molecular processes. The combination of a high genetic amenability, numerous genetic tools, and vast genomic resources makes it one of the most versatile model organisms, employed in a wide range of basic research disciplines. However, its small size compared to other eukaryotic organisms has limited its use for the study of sub-cellular structures. The diameter of unbudded yeast cells ranges approximately between 4 μm in haploids and 6 μm in diploids (Milo and Phillips 2015), complicating conventional diffraction-limited light microscopy approaches.
biophysics, New Methods
biophysics, New Methods
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
