
arXiv: 1510.05360
Let $G=(V,E)$ be a simple graph. A set $I\subseteq V$ is an independent set, if no two of its members are adjacent in $G$. The $k$-independent graph of $G$, $I_k (G)$, is defined to be the graph whose vertices correspond to the independent sets of $G$ that have cardinality at most $k$. Two vertices in $I_k(G)$ are adjacent if and only if the corresponding independent sets of $G$ differ by either adding or deleting a single vertex. In this paper, we obtain some properties of $I_k(G)$ and compute it for some graphs.
10 pages, 4 Figures......This is updated version of paper in arXiv:1510.05360 which the name of co-author "Abdul Jalil M. Khalaf" added
FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), 05C60, 05C69
FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), 05C60, 05C69
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
