Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

SSCS Open Journal Webinar: Quantized-Analog Signal Processing Slides

Authors: Antonio Liscidini;

SSCS Open Journal Webinar: Quantized-Analog Signal Processing Slides

Abstract

Abstract: Nowadays both digital and analog electronics are reaching fundamental limits that will require revolutionary approaches to satisfy the power/bandwidth requirements of the next generation of data-driven applications.In the first part of the talk, analog and digital signal processing will be compared in terms of power efficiency by highlighting the presence of a thermodynamic upper-bound which relates dynamic range, bandwidth and power dissipation. To circumvent this limit, in the second part of the talk, the quantized-analog signal processing will be introduced. In such approach, analog and digital domains are merged together in a more fluid scenario compared to traditional mixed-signal circuits avoiding the needs of rigid interfaces such as analog-to-digital and digital-to-analog converters. It will be shown that the quantized-analog signal processing leads to superior power efficiency and flexibility compared to its analog counterpart and it represents a good candidate for the development of a new generation of mixed signal integrated circuits. The effectiveness of the proposed solutions will be demonstrated through simulations and measurement results on RF-analog front-ends.

Webinar Slides

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!