Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the American Society of Nephrology
Article . 2016 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Alternative Splicing in CKD

Authors: Stevens, Megan; Oltean, Sebastian;

Alternative Splicing in CKD

Abstract

Alternative splicing (AS) has emerged in the postgenomic era as one of the main drivers of proteome diversity, with ≥94% of multiexon genes alternatively spliced in humans. AS is therefore one of the main control mechanisms for cell phenotype, and is a process deregulated in disease. Numerous reports describe pathogenic mutations in splice factors, splice sites, or regulatory sequences. Additionally, compared with the physiologic state, disease often associates with an abnormal proportion of splice isoforms (or novel isoforms), without an apparent driver mutation. It is therefore essential to study how AS is regulated in physiology, how it contributes to pathogenesis, and whether we can manipulate faulty splicing for therapeutic advantage. Although the disease most commonly linked to deregulation of AS in several genes is cancer, many reports detail pathogenic splice variants in diseases ranging from neuromuscular disorders to diabetes or cardiomyopathies. A plethora of splice variants have been implicated in CKDs as well. In this review, we describe examples of these CKD-associated splice variants and ideas on how to manipulate them for therapeutic benefit.

Related Organizations
Keywords

Vascular Endothelial Growth Factor A, 570, Vascular Endothelial Growth Factor Receptor-1, mRNA, 610, Alternative Splicing, Mutation, gene expression, Animals, Humans, Renal Insufficiency, Chronic, chronic kidney disease

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
bronze