
handle: 10220/25354 , 10356/107089
The behaviour of reinforced concrete (RC) beams under single or repetitive drop-weight impact loading has come under increasing attention within the engineering community in the past decades. However, until now, little effort has been sought towards examining the residual resistance of RC beams after impact damage. To contribute towards a better understanding in this area, both experimental and numerical investigations were carried out. The beams were first tested under drop-weight impact loading. Subsequently, quasi-static bending tests were conducted on the same specimens to obtain the residual behaviour. Thereafter, one beam from each series without any prior damage was tested under monotonic static loading to compare its behaviour with impact-damaged specimens. Furthermore, to investigate the structural response in detail, a numerical procedure was developed in an explicit finite-element program. Upon successful validation of the numerical results with the experimental outcomes, numerical case studies were carried out to quantify the variation of residual resistance index in terms of various parameters.
:Engineering::Civil engineering::Structures and design [DRNTU], DRNTU::Engineering::Civil engineering::Structures and design, 624, 551, 620
:Engineering::Civil engineering::Structures and design [DRNTU], DRNTU::Engineering::Civil engineering::Structures and design, 624, 551, 620
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 63 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
