Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Stem Cellsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Stem Cells
Article . 2007 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Stem Cells
Article
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Immunosuppression by Embryonic Stem Cells

Authors: Cody A. Koch; Jeffrey L. Platt; Pedro Geraldes;

Immunosuppression by Embryonic Stem Cells

Abstract

AbstractEmbryonic stem cells or their progeny inevitably differ genetically from those who might receive the cells as transplants. We tested the barriers to engraftment of embryonic stem cells and the mechanisms that determine those barriers. Using formation of teratomas as a measure of engraftment, we found that semiallogeneic and fully allogeneic embryonic stem cells engraft successfully in mice, provided a sufficient number of cells are delivered. Successfully engrafted cells did not generate immunological memory; unsuccessfully engrafted cells did. Embryonic stem cells reversibly, and in a dose-dependent manner, inhibited T-cell proliferation to various stimuli and the maturation of antigen-presenting cells induced by lipopolysaccharide. Inhibition of both was owed at least in part to production of transforming growth factor-β by the embryonic stem cells. Thus, murine embryonic stem cells exert “immunosuppression” locally, enabling engraftment across allogeneic barriers.Disclosure of potential conflicts of interest is found at the end of this article.

Related Organizations
Keywords

T-Lymphocytes, Antigen-Presenting Cells, Apoptosis, Neoplasms, Experimental, Skin Transplantation, Flow Cytometry, Killer Cells, Natural, Mice, Transforming Growth Factor beta, Immune Tolerance, Animals, Transplantation, Homologous, Lymphocyte Culture Test, Mixed, Embryonic Stem Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 10%
Top 10%
Top 10%
hybrid